Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 
 

 

Global existence of solutions by path decomposition for a model of multiphase flow


Authors: Fumioki Asakura and Andrea Corli
Journal: Quart. Appl. Math. 71 (2013), 135-182
MSC (2010): Primary 35L65; Secondary 35D30, 76T30
DOI: https://doi.org/10.1090/S0033-569X-2012-01318-4
Published electronically: October 2, 2012
MathSciNet review: 3075539
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We consider a strictly hyperbolic system of three conservation laws, in one space dimension. The system is a simple model for a fluid flow undergoing liquid-vapor phase transitions. We prove, by a front-tracking algorithm, that weak solutions exist for all times under a condition on the (large) variation of the initial data. An original issue is the control of interactions by means of decompositions of shock waves into paths.


References [Enhancements On Off] (What's this?)

  • 1. Debora Amadori and Andrea Corli, A hyperbolic model of multi-phase flow, Hyperbolic Problems: Theory, Numerics, Applications. Proceedings of the $ 11^{th}$ Int. Conf. on Hyperbolic Problems (Sylvie Benzoni-Gavage and Denis Serre, eds.), Springer, 2008, pp. 407-414. MR 2549172
  • 2. -, On a model of multiphase flow, SIAM J. Math. Anal. 40 (2008), no. 1, 134-166. MR 2403315
  • 3. -, Global existence of BV solutions and relaxation limit for a model of multiphase reactive flow, Nonlinear Anal. 72 (2010), no. 5, 2527-2541. MR 2577817
  • 4. Debora Amadori and Graziano Guerra, Global BV solutions and relaxation limit for a system of conservation laws, Proc. Roy. Soc. Edinburgh Sect. A 131 (2001), no. 1, 1-26. MR 1820292 (2002a:35135)
  • 5. Fumioki Asakura, Wave-front tracking for the equations of isentropic gas dynamics, Quart. Appl. Math. 63 (2005), no. 1, 20-33. MR 2126567 (2005k:35256)
  • 6. François Bereux, Eric Bonnetier, and Philippe G. LeFloch, Gas dynamics system: two special cases, SIAM J. Math. Anal. 28 (1997), no. 3, 499-515. MR 1443605 (98d:76143)
  • 7. Alberto Bressan, Hyperbolic systems of conservation laws. The one-dimensional Cauchy problem, Oxford University Press, 2000. MR 1816648 (2002d:35002)
  • 8. Andrea Corli and Haitao Fan, The Riemann problem for reversible reactive flows with metastability, SIAM J. Appl. Math. 65 (2004/05), no. 2, 426-457. MR 2123064 (2005j:35149)
  • 9. Constantine M. Dafermos, Hyperbolic conservation laws in continuum physics, third ed., Springer-Verlag, Berlin, 2010. MR 2169977 (2006d:35159)
  • 10. Haitao Fan, On a model of the dynamics of liquid/vapor phase transitions, SIAM J. Appl. Math. 60 (2000), no. 4, 1270-1301. MR 1760035 (2001b:76092)
  • 11. L. Gosse, Existence of $ L\sp \infty $ entropy solutions for a reacting Euler system, Port. Math. (N.S.) 58 (2001), no. 4, 473-484. MR 1881874 (2003f:76082)
  • 12. Helge Holden, Nils Henrik Risebro, and Hilde Sande, The solution of the Cauchy problem with large data for a model of a mixture of gases, J. Hyperbolic Differ. Equ. 6 (2009), no. 1, 25-106. MR 2512503 (2010j:35316)
  • 13. -, Front tracking for a model of immiscible gas flow with large data, BIT 50 (2010), no. 2, 331-376. MR 2640017
  • 14. Randall J. LeVeque, Helen C. Yee, Philip Roe, and Bram van Leer, Model systems for reacting flows, NASA-Ames University Consortium NCA2-185 (1988).
  • 15. Tai Ping Liu, Initial-boundary value problems for gas dynamics, Arch. Rational Mech. Anal. 64 (1977), no. 2, 137-168. MR 0433017 (55:5996)
  • 16. -, Solutions in the large for the equations of nonisentropic gas dynamics, Indiana Univ. Math. J. 26 (1977), no. 1, 147-177. MR 0435618 (55:8576)
  • 17. Yunguang Lu, Hyperbolic conservation laws and the compensated compactness method, Chapman & Hall/CRC, Boca Raton, FL, 2003. MR 1936672 (2004b:35223)
  • 18. Takaaki Nishida, Global solution for an initial boundary value problem of a quasilinear hyperbolic system, Proc. Japan Acad. 44 (1968), 642-646. MR 0236526 (38:4821)
  • 19. Takaaki Nishida and Joel A. Smoller, Solutions in the large for some nonlinear hyperbolic conservation laws, Comm. Pure Appl. Math. 26 (1973), 183-200. MR 0330789 (48:9126)
  • 20. Yue-Jun Peng, Solutions faibles globales pour un modèle d'écoulements diphasiques, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 21 (1994), no. 4, 523-540. MR 1318771 (96a:35108)
  • 21. Joel Smoller, Shock waves and reaction-diffusion equations, second ed., Springer-Verlag, New York, 1994. MR 1301779 (95g:35002)
  • 22. B. Temple and R. Young, The large time stability of sound waves, Comm. Math. Phys. 179 (1996), no. 2, 417-466. MR 1400747 (97f:35132)

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC (2010): 35L65, 35D30, 76T30

Retrieve articles in all journals with MSC (2010): 35L65, 35D30, 76T30


Additional Information

Fumioki Asakura
Affiliation: Department of Asset Management, Osaka Electro-Communication University, Neyagawa, Osaka, Japan

Andrea Corli
Affiliation: Department of Mathematics, University of Ferrara, Ferrara, Italy

DOI: https://doi.org/10.1090/S0033-569X-2012-01318-4
Received by editor(s): April 28, 2011
Published electronically: October 2, 2012
Article copyright: © Copyright 2012 Brown University

American Mathematical Society