Decay of mass for fractional evolution equation with memory term
Authors:
Ahmad Z. Fino, Hassan Ibrahim and Bilal Barakeh
Journal:
Quart. Appl. Math. 71 (2013), 215-228
MSC (2010):
Primary 35K55, 35B40
DOI:
https://doi.org/10.1090/S0033-569X-2012-01286-4
Published electronically:
August 27, 2012
MathSciNet review:
3087420
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: We investigate the decay properties of the mass of the solutions of a fractional diffusion equation with nonlinear memory term. We show, using a suitable class of initial data and a restriction on the diffusion and nonlinear term, that the memory term determines the large time asymptotics; that is,
tends to zero as
- 1. M. Ben-Artzi, H. Koch, Decay of mass for a semilinear parabolic equation, Comm. Partial Differential Equations 24 (1999), 869-881. MR 1680909 (2000a:35098)
- 2. P. Biler, G. Karch, W. A. Woyczyński, Critical nonlinearity exponent and self-similar asymptotics for Lévy conservation laws, Ann. Inst. Henri Poincaré Analyse Non Linéaire, 18 (2001), 613-637. MR 1849690 (2002f:35035)
- 3.
K. Bogdan, T. Byczkowski, Potential theory for the
-stable Schrödinger operator on bounded Lipschitz domains, Studia Mathematica 133 (1999), no. 1, 53-92. MR 1671973 (99m:31010)
- 4. T. Cazenave, F. Dickstein, F. D. Weissler, An equation whose Fujita critical exponent is not given by scaling, Nonlinear Analysis 68 (2008), 862-874. MR 2382302 (2009c:35218)
- 5. T. Cazenave, A. Haraux, Introduction aux problèmes d'évolution semi-linéaires, Ellipses, Paris, (1990). MR 1299976 (95f:35002)
- 6. J. Droniou, C. Imbert, Fractal first-order partial differential equations, Arch. Rational Mech. Anal. 182 (2006), 299-331. MR 2259335 (2009c:35037)
- 7. A. Z. Fino, V. Georgiev, M. Kirane, Finite time blow-up for a wave equation with a nonlocal nonlinearity, submitted, arXiv:1008.4219.
- 8. A. Fino, G. Karch, Decay of mass for nonlinear equation with fractional Laplacian, J. Monatsh. Math. 160 (2010), 375-384. MR 2661320
- 9. A. Z. Fino, M. Kirane, Qualitative properties of solutions to a time-space fractional evolution equation, Quarterly of Applied Mathematics 70 (2012), 133-157.
- 10.
H. Fujita, On the blowing up of solutions of the problem for
, J. Fac. Sci. Univ. Tokyo 13 (1966), 109-124. MR 0214914 (35:5761)
- 11. M. Guedda, M. Kirane, Criticality for some evolution equations, Differential Equations 37 (2001), 511-520. MR 1854046 (2002h:35028)
- 12.
N. Ju, The Maximum Principle and the Global Attractor for the Dissipative
-D Quasi-Geostrophic Equations, Comm. Pure. Appl. Ana. 255 (2005), 161-181. MR 2123380 (2005m:37194)
- 13. G. Karch, W.A. Woyczyński, Fractal Hamilton-Jacobi-KPZ equations, Trans. Amer. Math. Soc. 360 (2008), 2423-2442. MR 2373320 (2008m:35182)
- 14. A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Volume 204 (North-Holland Mathematics Studies), 2006. MR 2218073 (2007a:34002)
- 15. M. Kirane, M. Qafsaoui, Global nonexistence for the Cauchy problem of some nonlinear reaction-diffusion systems, J. Math. Analysis and Appl. 268 (2002), 217-243. MR 1893203 (2004a:35123)
- 16.
D. Lamberton, Equations d'évolution linéaires associées à des semi-groupes de contractions dans les espaces
, J. Functional Analysis, 72 (1987), 252-262. MR 886813 (88g:47085)
- 17. Ph. Laurençot, Ph. Souplet, On the growth of mass for a viscous Hamilton-Jacobi equation, J. Anal. Math. 89 (2003), 367-383. MR 1981925 (2004c:35188)
- 18. F. Mainardi, Fractional Calculus andWaves in Linear Viscoelasticity, Imperial College Press, London, UK, 2010. MR 2676137 (2011e:74002)
- 19. E. Mitidieri, S. I. Pohozaev, A priori estimates and blow-up of solutions to nonlinear partial differential equations and inequalities, Proc. Steklov. Inst. Math. 234 (2001), 1-383. MR 1879326 (2005d:35004)
- 20. M. Nagasawa, T. Sirao, Probabilistic treatment of the blowing up of solutions for a nonlinear integral equation, Trans. Amer. Math. Soc. 139 (1969), 301-310. MR 0239379 (39:736)
- 21. Jace W. Nunziato, On heat conduction in materials with memory, Quart. Appl. Math. 29 (1971), 187-204. MR 0295683 (45:4749)
- 22.
R. G. Pinsky, Decay of mass for the equation
, J. Diff. Eq. 165 (2000), 1-23. MR 1771786 (2001g:35109)
- 23. C. A. Roberts, W. E. Olmstead, Blow-up in a subdiffusive medium of infinite extent, Fract. Calc. Appl. Anal. 12 (2009), 179-194. MR 2498365 (2010d:35381)
- 24. S. Sugitani, On nonexistence of global solutions for some nonlinear integral equations, Osaka J. Math. 12 (1975), 45-51. MR 0470493 (57:10247)
- 25. K. Yosida, ``Functional Analysis'', sixth edition, Springer-Verlag, Berlin, Heidelberg, New York, 1980. MR 617913 (82i:46002)
- 26. Qi S. Zhang, A blow up result for a nonlinear wave equation with damping: the critical case, C. R. Acad. Sci. Paris 333 (2001), 109-114. MR 1847355 (2003d:35189)
- 27. Wei Zhang, Nobuyuki Shimizu, Damping properties of the viscoelastic material described by fractional Kelvin-Voigt model, JSME international journal. Series C, Mechanical systems, machine elements and manufacturing, 42 (1999), no. 1, 1-9.
- 28. F. Weissler, Existence and non-existence of global solutions for a semilinear heat equation, Israel J. Math. 38 (1981), 29-40. MR 599472 (82g:35059)
- 29. F. Weissler, Semilinear Evolution Equations in Banach Spaces, J. Functional Analysis 32 (1979), 277-296. MR 538855 (80i:47091)
Retrieve articles in Quarterly of Applied Mathematics with MSC (2010): 35K55, 35B40
Retrieve articles in all journals with MSC (2010): 35K55, 35B40
Additional Information
Ahmad Z. Fino
Affiliation:
LaMA-Liban, Lebanese University, P.O. Box 37 Tripoli, Lebanon, and School of Arts and Sciences, Lebanese International University (LIU), Tripoli Campus, Dahr el Ain Road, Tripoli, Lebanon
Email:
ahmad.fino01@gmail.com, afino@ul.edu.lb
Hassan Ibrahim
Affiliation:
Lebanese University, Faculty of Sciences-I, Hadath, Beirut, Lebanon & LaMA-Liban, Lebanese University, P.O. Box 37 Tripoli, Lebanon, and School of Arts and Sciences, Lebanese International University (LIU), Beirut Campus, Al-Mouseitbeh, P.B. Box 14-6404, Beirut, Lebanon
Email:
ibrahim@cermics.enpc.fr
Bilal Barakeh
Affiliation:
LaMA-Liban, Lebanese University, P.O. Box 37 Tripoli, Lebanon
Email:
bilal.barakeh@hotmail.com
DOI:
https://doi.org/10.1090/S0033-569X-2012-01286-4
Keywords:
Large time behavior of solutions,
semilinear parabolic equation,
fractional Laplacian
Received by editor(s):
May 17, 2011
Published electronically:
August 27, 2012
Article copyright:
© Copyright 2012
Brown University