Simultaneous temperature and flux controllability for heat equations with memory
Authors:
S. Avdonin and L. Pandolfi
Journal:
Quart. Appl. Math. 71 (2013), 339368
MSC (2010):
Primary 76A10, 93C05, 47N70
Published electronically:
October 22, 2012
MathSciNet review:
3087427
Fulltext PDF
Abstract 
References 
Similar Articles 
Additional Information
Abstract: It is known that, in the case of the heat equation with memory, temperature can be controlled to an arbitrary square integrable target provided that the system evolves for a sufficiently long time. The control is the temperature on the boundary. In this paper we consider heat equations with memory (onedimensional space variable) and we first show that when the control is square integrable, then the flux is square integrable too. Then we prove that both temperature and flux can be simultaneously controlled to a pair of independent targets, both square integrable. This solves a problem first raised by Renardy. The method of proof relies on moment theory, and one of the contributions of this paper is the identification of bases and Riesz bases especially suited to heat equations with memory, which so appear to be endowed with a very rich bases structure.
 1.
S.
A. Avdonin, On the question of Riesz bases of exponential functions
in 𝐿², Vestnik Leningrad. Univ. No. 13 Mat. Meh.
Astronom. Vyp. 3 (1974), 5–12, 154 (Russian, with
English summary). MR 0361746
(50 #14191)
 2.
S.A. Avdonin and B.P. Belinskiy, Exact control of a string under an axial stretching tension, Discrete and Continuous Dynamical Systems, Expanded Volume (2003), 5767.
 3.
Sergei
A. Avdonin and Boris
P. Belinskiy, On the basis properties of the functions arising in
the boundary control problem of a string with a variable tension,
Discrete Contin. Dyn. Syst. suppl. (2005), 40–49. MR 2192658
(2006i:93006)
 4.
Sergei
A. Avdonin, Boris
P. Belinskiy, and Sergei
A. Ivanov, On controllability of an elastic ring, Appl. Math.
Optim. 60 (2009), no. 1, 71–103. MR 2511787
(2010i:93004), 10.1007/s0024500990642
 5.
S.
A. Avdonin, B.
P. Belinskiy, and L.
Pandolfi, Controllability of a nonhomogeneous string and ring under
time dependent tension, Math. Model. Nat. Phenom. 5
(2010), no. 4, 4–31. MR 2662448
(2011d:93010), 10.1051/mmnp/20105401
 6.
Sergei
A. Avdonin and Sergei
A. Ivanov, Families of exponentials, Cambridge University
Press, Cambridge, 1995. The method of moments in controllability problems
for distributed parameter systems; Translated from the Russian and revised
by the authors. MR 1366650
(97b:93002)
 7.
S. Avdonin and L. Pandolfi, Temperature and heat flux dependence/independence for heat equations with memory, ``Time Delay SystemsMethods, Applications and New Trends,'' 87101, Lecture Notes in Control and Information Sciences, Springer, 2011.
 8.
V.
Barbu and M.
Iannelli, Controllability of the heat equation with memory,
Differential Integral Equations 13 (2000), no. 1012,
1393–1412. MR 1787073
(2001i:93011)
 9.
Carlo
Cattaneo, Sulla conduzione del calore, Atti Sem. Mat. Fis.
Univ. Modena 3 (1949), 83–101 (Italian). MR 0032898
(11,362d)
 10.
Xiaoyu
Fu, Jiongmin
Yong, and Xu
Zhang, Controllability and observability of a heat equation with
hyperbolic memory kernel, J. Differential Equations
247 (2009), no. 8, 2395–2439. MR 2561284
(2010j:93009), 10.1016/j.jde.2009.07.026
 11.
Morton
E. Gurtin and A.
C. Pipkin, A general theory of heat conduction with finite wave
speeds, Arch. Rational Mech. Anal. 31 (1968),
no. 2, 113–126. MR
1553521, 10.1007/BF00281373
 12.
G.
Leugering, Time optimal boundary controllability of a simple linear
viscoelastic liquid, Math. Methods Appl. Sci. 9
(1987), no. 3, 413–430. MR 908599
(89a:76012), 10.1002/mma.1670090130
 13.
G.
Leugering, A decomposition method for integropartial differential
equations and applications, J. Math. Pures Appl. (9)
71 (1992), no. 6, 561–587. MR 1193609
(93i:45012)
 14.
Vilmos
Komornik and Paola
Loreti, Fourier series in control theory, Springer Monographs
in Mathematics, SpringerVerlag, New York, 2005. MR 2114325
(2006a:93001)
 15.
Paola
Loreti and Daniela
Sforza, Reachability problems for a class of integrodifferential
equations, J. Differential Equations 248 (2010),
no. 7, 1711–1755. MR 2593605
(2011d:93008), 10.1016/j.jde.2009.09.016
 16.
Luciano
Pandolfi, The controllability of the GurtinPipkin equation: a
cosine operator approach, Appl. Math. Optim. 52
(2005), no. 2, 143–165. MR 2157198
(2007a:93019), 10.1007/s0024500508190
 17.
L. Pandolfi, Controllability of the GurtinPipkin equation. SISSA, Proceedings of Science, PoS(CSTNA2005)015.
 18.
L.
Pandolfi, Riesz systems and controllability of heat equations with
memory, Integral Equations Operator Theory 64 (2009),
no. 3, 429–453. MR 2521245
(2010m:93019), 10.1007/s0002000916821
 19.
Luciano
Pandolfi, Riesz systems and moment method in the study of
viscoelasticity in one space dimension, Discrete Contin. Dyn. Syst.
Ser. B 14 (2010), no. 4, 1487–1510. MR 2679652
(2011j:47233), 10.3934/dcdsb.2010.14.1487
 20.
Luciano
Pandolfi, Riesz systems, spectral controllability and a source
identification problem for heat equations with memory, Discrete
Contin. Dyn. Syst. Ser. S 4 (2011), no. 3,
745–759. MR 2746431
(2012c:93047), 10.3934/dcdss.2011.4.745
 21.
D.
D. Joseph and Luigi
Preziosi, Heat waves, Rev. Modern Phys. 61
(1989), no. 1, 41–73. MR 977943
(89k:80001), 10.1103/RevModPhys.61.41
 22.
Michael
Renardy, Are viscoelastic flows under control or out of
control?, Systems Control Lett. 54 (2005),
no. 12, 1183–1193. MR 2175633
(2006d:93031), 10.1016/j.sysconle.2005.04.006
 23.
A.
M. Sedletski&ibreve;, Biorthogonal expansions of functions in
exponential series on intervals of the real axis, Uspekhi Mat. Nauk
37 (1982), no. 5(227), 51–95, 248 (Russian). MR 676613
(84g:42025)
 24.
Francesco
Giacomo Tricomi, Differential equations, Translated by
Elizabeth A. McHarg, Hafner Publishing Co., New York, 1961. MR 0138812
(25 #2254b)
 25.
Robert
M. Young, An introduction to nonharmonic Fourier series, 1st
ed., Academic Press, Inc., San Diego, CA, 2001. MR 1836633
(2002b:42001)
 1.
 S.A. Avdonin, On Riesz bases of exponentials in . Vestnik Leningr. Univ., Ser. Mat., Mekh., Astron. 13 (1974) 512 (Russian); English transl. Vestnik Leningr. Univ. Math. 7 (1979), 203211. MR 0361746 (50:14191)
 2.
 S.A. Avdonin and B.P. Belinskiy, Exact control of a string under an axial stretching tension, Discrete and Continuous Dynamical Systems, Expanded Volume (2003), 5767.
 3.
 S.A. Avdonin and B.P. Belinskiy, On the basis properties of the functions arising in the boundary control problem of a string with a variable tension, Discrete and Continuous Dynamical Systems: A Supplement Volume (2005), 4049. MR 2192658 (2006i:93006)
 4.
 S.A. Avdonin, B.P. Belinskiy and S.A. Ivanov, Exact controllability of an elastic ring, Applied Math. Optim. 60 (2009), no. 1, 71103. MR 2511787 (2010i:93004)
 5.
 S. Avdonin, B. Belinskiy and L. Pandolfi, Controllability of a nonhomogeneous string and ring under time dependent tension, Math. Model. Natur. Phenom. 5 (2010), no. 4, 431. MR 2662448 (2011d:93010)
 6.
 S.A. Avdonin and S.A. Ivanov, Families of Exponentials. The Method of Moments in Controllability Problems for Distributed Parameter Systems. Cambridge University Press, New York, 1995. MR 1366650 (97b:93002)
 7.
 S. Avdonin and L. Pandolfi, Temperature and heat flux dependence/independence for heat equations with memory, ``Time Delay SystemsMethods, Applications and New Trends,'' 87101, Lecture Notes in Control and Information Sciences, Springer, 2011.
 8.
 V. Barbu and M. Iannelli, Controllability of the heat equation with memory. Diff. Integral Eq. 13 (2000), 13931412. MR 1787073 (2001i:93011)
 9.
 C. Cattaneo, Sulla conduzione del calore. Atti del Seminario Matematico e Fisico dell'Università di Modena 3 (1948), 83101. MR 0032898 (11:362d)
 10.
 X. Fu, J. Yong and X. Zhang, Controllability and observability of the heat equation with hyperbolic memory kernel. J. Diff. Equations 247 (2009), 23952439. MR 2561284 (2010j:93009)
 11.
 M.E. Gurtin and A.G. Pipkin, A general theory of heat conduction with finite wave speed. Arch. Rat. Mech. Anal. 31 (1968), 113126. MR 1553521
 12.
 G. Leugering, Time optimal boundary controllability of a simple linear viscoelastic liquid. Math. Methods in the Appl. Sci. 9 (1987), 413430. MR 908599 (89a:76012)
 13.
 G. Leugering, A decomposition method for integropartial differential equations and applications. J. Math. Pures Appl. 71 (1992), 561587. MR 1193609 (93i:45012)
 14.
 P. Loreti and V. Komornik, Fourier Series in Control Theory. SpringerVerlag, New York, 2005. MR 2114325 (2006a:93001)
 15.
 P. Loreti and D. Sforza, Reachability problems for a class of integrodifferential equations. J. Differential Equations 248 (2010), 17111755. MR 2593605 (2011d:93008)
 16.
 L. Pandolfi, The controllability of the GurtinPipkin equation: a cosine operator approach. Applied Mathematics and Optim. 52 (2005), 143165. MR 2157198 (2007a:93019)
 17.
 L. Pandolfi, Controllability of the GurtinPipkin equation. SISSA, Proceedings of Science, PoS(CSTNA2005)015.
 18.
 L. Pandolfi, Riesz systems and controllability of heat equations with memory. Int. Eq. Operator Theory 64 (2009), 429453. MR 2521245 (2010m:93019)
 19.
 L. Pandolfi, Riesz systems and moment method in the study of heat equations with memory in one space dimension. Discr. Cont. Dynamical Systems, Ser. B/ 14 (2010), 14871510. MR 2679652
 20.
 L. Pandolfi, Riesz systems and an identification problem for heat equations with memory. Discr. Cont. Dynamical Systems, Ser. S 4 (2011), 745759. MR 2746431
 21.
 D.D. Joseph and L. Preziosi, Heat waves, Rev. Modern Phys. 61 (1989), 4173; Addendum to the paper: ``Heat waves''. Rev. Modern Phys. 62 (1990), 375391. MR 977943 (89k:80001)
 22.
 M. Renardy, Are viscoelastic flows under control or out of control? Systems Control Lett. 54 (2005), 11831193. MR 2175633 (2006d:93031)
 23.
 A.M. Sedletskiĭ, Biorthogonal expansions of functions in exponential series on intervals of the real axis. Uspekhi Mathematicheskikh Nauk. 37 (1982), 5195 (Russian); English transl. Russian Math. Surveys 37 (1983), 57108. MR 676613 (84g:42025)
 24.
 F. Tricomi, Differential Equations. Blackie & Sons, Toronto, 1961. MR 0138812 (25:2254b)
 25.
 R.M. Young, An Introduction to Nonharmonic Fourier Series. Academic Press, New York, 2001. MR 1836633 (2002b:42001)
Similar Articles
Retrieve articles in Quarterly of Applied Mathematics
with MSC (2010):
76A10,
93C05,
47N70
Retrieve articles in all journals
with MSC (2010):
76A10,
93C05,
47N70
Additional Information
S. Avdonin
Affiliation:
Department of Mathematics, University of Tennessee at Chattanooga, Chattanooga, Tennessee 374032598, USA
Email:
s.avdonin@alaska.edu
L. Pandolfi
Affiliation:
Dipartimento di Scienze Matematiche, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
Email:
luciano.pandolfi@polito.it
DOI:
http://dx.doi.org/10.1090/S0033569X2012012877
PII:
S 0033569X(2012)012877
Received by editor(s):
July 27, 2011
Published electronically:
October 22, 2012
Additional Notes:
Supported in part by the National Science Foundation, grant ARC 0724860. This paper was partly written while the first author visited the Dipartimento di Matematica, Politecnico di Torino, as a visiting professor supported by GNAMPAINDAM
Supported in part by Italian MURST and by the project “Groupement de Recherche en Contrôle des EDP entre la France et l’Italie (CONEDP)”. This paper fits into the research programs of GNAMPAINDAM
Article copyright:
© Copyright 2012
Brown University
