Predictions for cooling a solid to its ground state

Author:
William C. Troy

Journal:
Quart. Appl. Math. **71** (2013), 331-338

MSC (2010):
Primary 82B10

DOI:
https://doi.org/10.1090/S0033-569X-2012-01294-3

Published electronically:
October 23, 2012

MathSciNet review:
3087426

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A major goal of quantum computing research is to drain all quanta of thermal energy from a solid at a positive temperature leaving the object in its ground state. In 2010 the first complete success was reported when a quantum drum was cooled to its ground state at However, current theory, which is based on the Bose-Einstein equation, predicts that the temperature as We prove that this discrepancy between experiment and theory is due to previously unobserved errors in low temperature predictions of the Bose-Einstein equation. We correct this error and derive a new formula for temperature which proves that as Simultaneously, the energy decreases to its `supersolid' ground state level as For experimental data our temperature formula predicts that in close agreement with the experimental result. Our results form a first step towards bridging the gap between existing theory and the construction of useful quantum computing devices.

**1.**P. Debye,*Zur theorie der spezifischen warme*Annalen der Physik (Leipzig)**39**(1912) 789.**2.**A. Einstein,*Die plancksche theorie der strahlung und die theorie der spezifischen warme.*Annalen der Physik**22**(1907) 180-190.**3.**H. Eyring, D. Henderson, B. J. Stover and E. M. Eyring,*Statistical Mechanics and Dynamics.*Wiley, Second Edition, New York, 1982.**4.**S. Groblacher, B. Hertzberg, M. Vanner, D. Cole, G. Gigan, S. K. Schwab and M. Aspelmeyer,*Demonstration of an ultracold micro-optomechanical oscillator in a cryogenic cavity.*Nature Physics**5**(2009) 485-488.**5.**E. Kim and M. H. W. Chan,*Probable observation of a supersolid helium phase.*Nature**427**(2004) 225 - 227**6.**A. D. O'Connell, M. Hofheinz, M. Ansmann, C. Bialczak, M. Lenander, E. Lucero, E. M. Neeley, D. Sank, D. H. Wang, M. Weides, J. Wenner, J. M. Martinis and A. N. Cleland,*Quantum ground state and single-photon control of a mechanical resonator.*Nature**464**(2010) 697-703.**7.**Y. Park and H. Wang,*Resolved-sideband and cryogenic cooling of an optomechanical resonator.*Nature Physics**5**(2009) 489-493.**8.**D. Powell,*Moved by Light.*Science News**179**(2011) 24-25.**9.**D. K. Prathia,*Statistical Mechanics.*Addison-Wesley, 1999.**10.**T. Rocheleau, T. Ndukum, C. Macklin, J. B. Hertzberg, A. A. Clerk and K. C. Schwab,*Preparation and detection of a mechanical resonator near the ground state of motion.*Nature**463**(2010) 72-75.**11.**O. Romero-Isart, A. C. Pflanzer, F. Blaser, FR. Kaltenbaek, N. Kissel, M. Aspelmeyer and J. I. Cirac,*Large quantum superpositions and interference of massive nanometer-sized objects.*Phys. Rev. Lett.**107**(2011) 02405-02408.**12.**A. Schliesser, O. Arcizet, R. Rivière, G. Anetsberger and T. J. Kippenberg,*Resolved-sideband cooling and position measurement of a micromechanical oscillator close to the Heisenberg uncertainty limit.*Nature Physics**5**(2009) 509-514.**13.**D. V. Schroeder,*An Introduction to Thermal Physics.*Addison-Wesley, 1999.**14.**J. D. Teufel, D. Li, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker and R. W. Simmonds,*Circuit electromechanics cavity in the strong coupling regime.*Nature**471**(2011) 204-208.**15.**J. D. Teufel, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert and R. W. Simmonds,*Sideband cooling of micromechanical motion to the quantum ground state.*Nature**475**(2011) 359-363.**16.**P. A. Tipler and R. A. Llewellyn,*Modern Physics.*W. H. Freeman and Co., New York, Fifth Edition, 2008

Retrieve articles in *Quarterly of Applied Mathematics*
with MSC (2010):
82B10

Retrieve articles in all journals with MSC (2010): 82B10

Additional Information

**William C. Troy**

Affiliation:
Department of Mathematics, University of Pittsburgh, Pittsburgh, Pennsylvania 15260

Email:
troy@math.pitt.edu

DOI:
https://doi.org/10.1090/S0033-569X-2012-01294-3

Keywords:
Bose-Einstein equation,
temperature

Received by editor(s):
July 21, 2011

Published electronically:
October 23, 2012

Article copyright:
© Copyright 2012
Brown University