Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
  Quarterly of Applied Mathematics
Quarterly of Applied Mathematics
  
Online ISSN 1552-4485; Print ISSN 0033-569X
 

On the existence of strong travelling wave profiles to $ 2 \times2$ systems of viscous conservation laws


Author: Hiroki Ohwa
Journal: Quart. Appl. Math. 71 (2013), 283-288
MSC (2000): Primary 35L65; Secondary 35L45
Published electronically: October 18, 2012
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We consider strong travelling wave profiles for a class of $ 2\times 2$ viscous conservation laws. Our main assumption is that the product of nondiagonal elements within the Fŕechet derivative (Jacobian) of the flux is nonnegative. By using the regularization method improved by the author, we prove the existence of strong travelling wave profiles for those systems.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC (2000): 35L65, 35L45

Retrieve articles in all journals with MSC (2000): 35L65, 35L45


Additional Information

Hiroki Ohwa
Affiliation: Graduate School of Education, Waseda University, 1-6-1 Nishi-Waseda, Shinjuku-ku, Tokyo, 169-8050, Japan
Email: ohwa-hiroki@suou.waseda.jp

DOI: http://dx.doi.org/10.1090/S0033-569X-2012-01301-0
PII: S 0033-569X(2012)01301-0
Keywords: Viscous conservation, strong travelling wave profiles, existence, vanishing viscosity approach
Received by editor(s): June 11, 2011
Published electronically: October 18, 2012
Article copyright: © Copyright 2012 Brown University
The copyright for this article reverts to public domain 28 years after publication.



Brown University The Quarterly of Applied Mathematics
is distributed by the American Mathematical Society
for Brown University
Online ISSN 1552-4485; Print ISSN 0033-569X
© 2014 Brown University
Comments: qam-query@ams.org
AMS Website