Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 
 

 

On the global weak solution to a generalized two-component Camassa-Holm system


Authors: Wenke Tan, Yue Liu and Zhaoyang Yin
Journal: Quart. Appl. Math. 71 (2013), 661-677
MSC (2010): Primary 35D30, 35G25, 35A01
DOI: https://doi.org/10.1090/S0033-569X-2013-01303-3
Published electronically: August 28, 2013
MathSciNet review: 3136989
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Considered herein is a generalized two-component Camassa-Holm system modeling the shallow water waves moving over a linear shear flow. The existence of the global weak solutions to the generalized two-component Camassa-Holm system is established and the solution is obtained as a limit of approximate global strong solutions.


References [Enhancements On Off] (What's this?)

  • 1. R. BEALS, D. SATTINGER, AND J. SZMIGIELSKI, Multipeakons and a theorem of Stieltjes, Inverse Problems, 15 (1999), 1-4. MR 1675325
  • 2. A. BRESSAN AND A. CONSTANTIN, Global conservative solutions of the Camassa-Holm equation, Arch. Rat. Mech. Anal., 183 (2007), 215-239. MR 2278406 (2007j:35183)
  • 3. A. BRESSAN AND A. CONSTANTIN, Global dissipative solutions of the Camassa-Holm equation, Anal. Appl., 5 (2007), 1-27. MR 2288533 (2007k:35394)
  • 4. R. CAMASSA AND D. HOLM, An integrable shallow water equation with peaked solitons, Phys. Rev. Letters, 71 (1993), 1661-1664. MR 1234453 (94f:35121)
  • 5. R. CAMASSA, D. HOLM AND J. HYMAN, A new integrable shallow water equation, Adv. Appl. Mech., 31 (1994), 1-33.
  • 6. M. CHEN, S. Q. LIU AND Y. ZHANG, A 2-component generalization of the Camassa-Holm equation and its solutions, Lett. Math. Phys., 75 (2006), 1-15. MR 2207043 (2006k:37177)
  • 7. R. M. CHEN AND Y. LIU, Wave breaking and global existence for a generalized two-component Camassa-Holm system, Int. Math. Res. Not., 6 (2011), 1381-1416. MR 2806508
  • 8. R. M. CHEN, Y. LIU AND Z. QIAO, Stability of solitary waves and global existence of a generalized two-component Camassa-Holm system, Comm. Partial Differential Equations, 36 (2011), 2162-2188. MR 2852073
  • 9. A. CONSTANTIN, The Hamiltonian structure of the Camassa-Holm equation, Exposition. Math., 15 (1997), 53-85. MR 1438436 (98c:76011)
  • 10. A. CONSTANTIN, Existence of permanent and breaking waves for a shallow water equation: a geometric approach, Ann. Inst. Fourier, Grenoble, 50 (2000), 321-362. MR 1775353 (2002d:37125)
  • 11. A. CONSTANTIN, On the scattering problem for the Camassa-Holm equation, Proc. R. Soc. London A, 457 (2001), 953-970. MR 1875310 (2002k:37132)
  • 12. A. CONSTANTIN, The trajectories of particles in Stokes waves, Invent. Math., 166 (2006), 523-535. MR 2257390 (2007j:35240)
  • 13. A. CONSTANTIN AND J. ESCHER, Wave breaking for nonlinear nonlocal shallow water equations, Acta Mathematica, 181 (1998), 229-243. MR 1668586 (2000b:35206)
  • 14. A. CONSTANTIN AND J. ESCHER, Global existence and blow-up for a shallow water equation, Annali Sc. Norm. Sup. Pisa, 26 (1998), 303-328. MR 1631589 (99m:35202)
  • 15. A. CONSTANTIN AND J. ESCHER, Well-posedness, global existence and blowup phenomena for a periodic quasi-linear hyperbolic equation, Comm. Pure Appl. Math., 51 (1998), 475-504. MR 1604278 (98k:35165)
  • 16. A. CONSTANTIN AND J. ESCHER, On the blow-up rate and the blow-up of breaking waves for a shallow water equation, Math. Z., 233 (2000), 75-91. MR 1738352 (2001b:35258)
  • 17. A. CONSTANTIN AND J. ESCHER, Particle trajectories in solitary water waves, Bull. Amer. Math. Soc., 44 (2007), 423-431. MR 2318158 (2008m:76019)
  • 18. A. CONSTANTIN AND J. ESCHER, Analyticity of periodic traveling free surface water waves with vorticity, Ann. of Math., 173 (2011), 559-568. MR 2753609 (2012a:35367)
  • 19. G. M. COCLITE, H. HOLDEN, AND K. H. KARLSEN, Global weak solutions to a generalized hyperelastic-rod wave equation, SIAM J. Math. Anal., 37 (2006), 1044-1069. MR 2192287 (2007h:35330)
  • 20. A. CONSTANTIN AND R. I. IVANOV, On an integrable two-component Camassa-Holm shallow water system, Phys. Lett. A, 372 (2008), 7129-7132. MR 2474608 (2009m:35418)
  • 21. A. CONSTANTIN AND R. S. JOHNSON, Propagation of very long water waves, with vorticity, over variable depth, with applications to tsunamis, Fluid Dynam. Res., 40 (2008), 175-211. MR 2369543 (2009b:76009)
  • 22. A. CONSTANTIN AND B. KOLEV, Geodesic flow on the diffeomorphism group of the circle, Comment. Math. Helv., 78 (2003), 787-804. MR 2016696 (2004k:37163)
  • 23. A. CONSTANTIN AND D. LANNES, The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations, Arch. Rational Mech. Anal., 192 (2009), 165-186. MR 2481064 (2010f:35334)
  • 24. A. CONSTANTIN AND L. MOLINET, Global weak solutions for a shallow water equation, Comm. Math. Phys., 211 (2000), 45-61. MR 1757005 (2001b:35247)
  • 25. A. CONSTANTIN AND W. A. STRAUSS, Stability of peakons, Comm. Pure Appl. Math., 53 (2000), 603-610. MR 1737505 (2001b:35252)
  • 26. A. CONSTANTIN AND W. A. STRAUSS, Stability of a class of solitary waves in compressible elastic rods, Phys. Lett. A, 270 (2000), 140-148. MR 1763691 (2001e:74048)
  • 27. H. H. DAI, Model equations for nonlinear dispersive waves in a compressible Mooney-Rivlin rod, Acta Mech., 127 (1998), 193-207. MR 1606738 (98m:73037)
  • 28. R. DANCHIN, A few remarks on the Camassa-Holm equation, Differential and Integral Equations 14 (2001), 953-988. MR 1827098 (2002e:35204)
  • 29. H. R. DULLIN, G. A. GOTTWALD, AND D. D. HOLM, An integrable shallow water equation with linear and nonlinear dispersion, Phys. Rev. Letters, 87 (2001), 4501-4504.
  • 30. J. ESCHER, O. LECHTENFELD AND Z. YIN, Well-posedness and blow-up phenomena for the 2-component Camassa-Holm equation, Discrete Contin. Dyn. Syst. Series A, 19 (2007), 493-513. MR 2335761 (2008j:35154)
  • 31. J. ESCHER AND Z. YIN, Initial boundary value problems of the Camassa-Holm equation, Commun. Partial Differential Equations, 33 (2008), 377-395. MR 2398234 (2010h:35336)
  • 32. J. ESCHER AND Z. YIN, Initial boundary value problems for nonlinear dispersive wave equations, J. Funct. Anal., 256 (2009), 479-508. MR 2476950 (2009k:35258)
  • 33. A. FOKAS AND B. FUCHSSTEINER, Symplectic structures, their Bäcklund transformation and hereditary symmetries, Physica D, 4 (1981), 47-66. MR 636470 (84j:58046)
  • 34. C. GUAN AND Z. YIN, Global existence and blow-up phenomena for an integrable two-component Camassa-Holm shallow water system, J. Differential Equations, 248 (2010), 2003-2014. MR 2595712 (2011b:35072)
  • 35. C. GUAN AND Z. YIN, Global weak solutions for a two-component Camassa-Holm shallow water system, J. Funct. Anal., 260 (2011), 1132-1154. MR 2747018 (2011m:35238)
  • 36. G. GUI AND Y. LIU, On the Cauchy problem for the two-component Camassa-Holm system, Math. Z., 268 (2010), 45-66. MR 2805424
  • 37. G. GUI, AND Y. LIU, On the global existence and wave-breaking criteria for the two-component Camassa-Holm system, J. Funct. Anal., 258 (2010), 4527-4578. MR 2609545 (2011i:35215)
  • 38. R. I. IVANOV, Two-component integrable systems modeling shallow water waves: the constant vorticity case, Wave Motion 46 (2009), 389-396. MR 2598636 (2011a:35415)
  • 39. R. S. JOHNSON, Camassa-Holm, Korteweg-de Vries and related models for water waves, J. Fluid. Mech., 457 (2002), 63-82. MR 1894796 (2003b:76026)
  • 40. T. KATO, Quasi-linear equations of evolution, with applications to partial differential equations, in ``Spectral Theory and Differential Equations'', Lecture Notes in Math., Vol. 448, Springer Verlag, Berlin (1975), 25-70. MR 0407477 (53:11252)
  • 41. B. KOLEV, Bi-Hamiltonian systems on the dual of the Lie algebra of vector fields of the circle and periodic shallow water equations, Philos. Trans. Roy. Soc. London A, 365 (2007), 2333-2357. MR 2329152 (2008e:37071)
  • 42. P. L. LIONS, Mathematical Topics in Fluid Mechanics, Vol. I. Incompressible models. Oxford Lecture Series in Mathematics and Applications, 3. Clarendon, Oxford University Press, New York, 1996. MR 1422251 (98b:76001)
  • 43. M. LAKSHMANAN, Integrable nonlinear wave equations and possible connections to tsunami dynamics, in Tsunami and nonlinear waves, pp. 31-49, Springer, Berlin, 2007. MR 2364923 (2008m:35309)
  • 44. Y. LI AND P. OLVER, Well-posedness and blow-up solutions for an integrable nonlinearly dispersive model wave equation, J. Differential Equations, 162 (2000), 27-63. MR 1741872 (2002a:35185)
  • 45. O. MUSTAFA, On smooth traveling waves of an integrable two-component Camassa-Holm shallow water system, Wave Motion 46 (2009), 397-402. MR 2598637 (2010m:76037)
  • 46. Z. POPOWICZ, A 2-component or $ N=2$ supersymmetric Camassa-Holm equation, Phys. Lett. A, 354 (2006), 110-114. MR 2220696
  • 47. P. OLVER AND P. ROSENAU, Tri-Hamiltonian duality between solitons and solitary-wave solutions having compact support, Phys. Rev. E, 53 (1996), 1900-1906. MR 1401317 (97c:35172)
  • 48. G. RODRIGUEZ-BLANCO, On the Cauchy problem for the Camassa-Holm equation, Nonlinear Anal., 46 (2001), 309-327. MR 1851854 (2002i:35172)
  • 49. A. SHABAT, AND L. MARTíNEZ ALONSO, On the Prolongation of a Hierarchy of Hydrodynamic Chains, In Proceedings of the NATO Advanced Research Workshop, Cadiz, Spain 2002, 263-280, NATO Science Series, Dordrecht: Kluwer Academic Publishers, 2004. MR 2153341 (2006d:37129)
  • 50. J. SIMON, Compact sets in the space $ L^p(0,T;B)$, Ann. Mat. Pura Appl., 146 (1987). MR 916688 (89c:46055)
  • 51. J. F. TOLAND, Stokes waves, Topol. Methods Nonlinear Anal., 7 (1996), 1-48. MR 1422004 (97j:35130)
  • 52. G. B. WHITHAM, Linear and nonlinear waves, J. Wiley & Sons, New York, 1980. MR 0483954 (58:3905)
  • 53. Z. XIN AND P. ZHANG, On the weak solutions to a shallow water equation, Comm. Pure Appl. Math., 53 (2000), 1411-1433. MR 1773414 (2001m:35278)
  • 54. Z. YIN, Well-posedness, blowup, and global existence for an integrable shallow water equation, Discrete Contin. Dyn. Syst. Series A, 11 (2004), 393-411. MR 2083424 (2005j:35022)
  • 55. P. ZHANG AND Y. LIU, Stability of solitary waves and wave-breaking phenomena for the two-component Camassa-Holm system, International Mathematics Research Notices, 211 (2009), 41pages. MR 2646352 (2011e:35285)

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC (2010): 35D30, 35G25, 35A01

Retrieve articles in all journals with MSC (2010): 35D30, 35G25, 35A01


Additional Information

Wenke Tan
Affiliation: Department of Mathematics, Sun Yat-sen University, Guangzhou 510275, People’s Republic of China
Email: tanwenkezyq@163.com

Yue Liu
Affiliation: Department of Mathematics, University of Texas, Arlington, Texas 76019-0408
Email: yliu@uta.edu

Zhaoyang Yin
Affiliation: Department of Mathematics, Sun Yat-sen University, Guangzhou 510275, People’s Republic of China
Email: mcsyzy@mail.sysu.edu.cn

DOI: https://doi.org/10.1090/S0033-569X-2013-01303-3
Keywords: Two-component Camassa-Holm system, global weak solution
Received by editor(s): October 7, 2011
Published electronically: August 28, 2013
Article copyright: © Copyright 2013 Brown University
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society