Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X



Finite Larmor radius approximation for collisional magnetic confinement. Part II: the Fokker-Planck-Landau equation

Authors: Mihai Bostan and Céline Caldini-Queiros
Journal: Quart. Appl. Math. 72 (2014), 513-548
MSC (2010): Primary 35Q75, 78A35, 82D10
DOI: https://doi.org/10.1090/S0033-569X-2014-01357-4
Published electronically: June 9, 2014
MathSciNet review: 3237562
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: This paper is devoted to the finite Larmor radius approximation of the Fokker-Planck-Landau equation, which plays a major role in plasma physics. We obtain a completely explicit form for the gyroaverage of the Fokker-Planck-Landau kernel, accounting for diffusion and convolution with respect to both velocity and (perpendicular) position coordinates. We show that the new collision operator enjoys the usual physical properties; the averaged kernel balances the mass, momentum, and kinetic energy and dissipates the entropy, globally in velocity and perpendicular position coordinates.

References [Enhancements On Off] (What's this?)

  • [1] Mihai Bostan, The Vlasov-Poisson system with strong external magnetic field. Finite Larmor radius regime, Asymptot. Anal. 61 (2009), no. 2, 91-123. MR 2499194 (2009k:82122)
  • [2] Mihai Bostan, Transport equations with disparate advection fields. Application to the gyrokinetic models in plasma physics, J. Differential Equations 249 (2010), no. 7, 1620-1663. MR 2677810 (2011i:82074), https://doi.org/10.1016/j.jde.2010.07.010
  • [3] Mihai Bostan, Gyrokinetic Vlasov equation in three dimensional setting. Second order approximation, Multiscale Model. Simul. 8 (2010), no. 5, 1923-1957. MR 2769087 (2012b:35342), https://doi.org/10.1137/090777621
  • [4] Mihaï Bostan and Céline Caldini-Queiros, Approximation de rayon de Larmor fini pour les plasmas magnétisés collisionnels, C. R. Math. Acad. Sci. Paris 350 (2012), no. 19-20, 879-884. MR 2990896, https://doi.org/10.1016/j.crma.2012.09.019
  • [5] M. Bostan, C. Caldini-Queiros, Finite Larmor radius approximation for collisional magnetic confinement. Part I : The linear Boltzmann equation, Quart. Appl. Math. 72 (2014), no. 2, 323-345.
  • [6] Carlo Cercignani, Reinhard Illner, and Mario Pulvirenti, The mathematical theory of dilute gases, Applied Mathematical Sciences, vol. 106, Springer-Verlag, New York, 1994. MR 1307620 (96g:82046)
  • [7] Laurent Desvillettes and Cédric Villani, On the spatially homogeneous Landau equation for hard potentials. I. Existence, uniqueness and smoothness, Comm. Partial Differential Equations 25 (2000), no. 1-2, 179-259. MR 1737547 (2001c:82065), https://doi.org/10.1080/03605300008821512
  • [8] Laurent Desvillettes and Cédric Villani, On the spatially homogeneous Landau equation for hard potentials. II. $ H$-theorem and applications, Comm. Partial Differential Equations 25 (2000), no. 1-2, 261-298. MR 1737548 (2001c:82066), https://doi.org/10.1080/03605300008821513
  • [9] Laurent Desvillettes, Plasma kinetic models: the Fokker-Planck-Landau equation, Modeling and computational methods for kinetic equations, Model. Simul. Sci. Eng. Technol., Birkhäuser Boston, Boston, MA, 2004, pp. 171-193. MR 2068584 (2005k:82073)
  • [10] E. Frénod, Application of the averaging method to the gyrokinetic plasma, Asymptot. Anal. 46 (2006), no. 1, 1-28. MR 2196630 (2007a:34090)
  • [11] Emmanuel Frénod and Eric Sonnendrücker, Homogenization of the Vlasov equation and of the Vlasov-Poisson system with a strong external magnetic field, Asymptot. Anal. 18 (1998), no. 3-4, 193-213. MR 1668938 (99m:82046)
  • [12] Emmanuel Frénod and Eric Sonnendrücker, The finite Larmor radius approximation, SIAM J. Math. Anal. 32 (2001), no. 6, 1227-1247 (electronic). MR 1856246 (2002g:82049), https://doi.org/10.1137/S0036141099364243
  • [13] X. Garbet, G. Dif-Pradalier, C. Nguyen, Y. Sarazin, V. Grandgirard, Ph. Ghendrih, Neoclassical equilibrium in gyrokinetic simulations, Phys. Plasmas 16(2009).
  • [14] François Golse and Laure Saint-Raymond, The Vlasov-Poisson system with strong magnetic field, J. Math. Pures Appl. (9) 78 (1999), no. 8, 791-817. MR 1715342 (2000g:35209), https://doi.org/10.1016/S0021-7824(99)00021-5
  • [15] R. D. Hazeltine, J. D. Meiss, Plasma confinement, Dover Publications, Inc., Mineola, New York, 2003.
  • [16] Laure Saint-Raymond, Control of large velocities in the two-dimensional gyrokinetic approximation, J. Math. Pures Appl. (9) 81 (2002), no. 4, 379-399. MR 1967354 (2004b:76166), https://doi.org/10.1016/S0021-7824(01)01245-4
  • [17] X. Q. Xu, M. N. Rosenbluth, Numerical simulation of ion-temperature-gradient-driven modes, Phys. Fluids, B 3(1991) 627-643.

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC (2010): 35Q75, 78A35, 82D10

Retrieve articles in all journals with MSC (2010): 35Q75, 78A35, 82D10

Additional Information

Mihai Bostan
Affiliation: Laboratoire d’Analyse, Topologie, Probabilités LATP, Centre de Mathématiques et Informatique CMI, UMR CNRS 7353, 39 rue Frédéric Joliot Curie, 13453 Marseille Cedex 13 France
Email: bostan@cmi.univ-mrs.fr

Céline Caldini-Queiros
Affiliation: Laboratoire de Mathématiques de Besançon, UMR CNRS 6623, Université de Franche-Comté, 16 route de Gray, 25030 Besançon Cedex France
Email: celine.caldini-queiros@univ-fcomte.fr

DOI: https://doi.org/10.1090/S0033-569X-2014-01357-4
Received by editor(s): July 4, 2012
Received by editor(s) in revised form: December 15, 2012
Published electronically: June 9, 2014
Article copyright: © Copyright 2014 Brown University

American Mathematical Society