Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 
 

 

Sensitivity analysis for a nonlinear size-structured population model


Authors: Keng Deng and Yi Wang
Journal: Quart. Appl. Math. 73 (2015), 401-417
MSC (2010): Primary 35L60, 92D25, 93B35
DOI: https://doi.org/10.1090/qam/1366
Published electronically: June 11, 2015
MathSciNet review: 3400750
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, we consider a nonlinear size-structured population model with vital rates depending on the total population. We derive sensitivity partial differential equations for the sensitivities of the solution with respect to the reproduction and mortality rates. We also present numerical results to illustrate the use of these sensitivity equations.


References [Enhancements On Off] (What's this?)

  • [1] Azmy S. Ackleh, Parameter estimation in a structured algal coagulation-fragmentation model, Nonlinear Anal. 28 (1997), no. 5, 837-854. MR 1422189, https://doi.org/10.1016/0362-546X(95)00195-2
  • [2] Azmy S. Ackleh, H. T. Banks, Keng Deng, and Shuhua Hu, Parameter estimation in a coupled system of nonlinear size-structured populations, Math. Biosci. Eng. 2 (2005), no. 2, 289-315. MR 2144241 (2006c:92015), https://doi.org/10.3934/mbe.2005.2.289
  • [3] Azmy S. Ackleh and Keng Deng, Existence-uniqueness of solutions for a nonlinear nonautonomous size-structured population model: an upper-lower solution approach, Canad. Appl. Math. Quart. 8 (2000), no. 1, 1-15. MR 1825386 (2002c:35260), https://doi.org/10.1216/camq/1008957332
  • [4] A. S. Ackleh and Keng Deng, Monotone scheme for nonlinear first-order hyperbolic initial-boundary value problems, Appl. Math. Lett. 13 (2000), no. 5, 111-119. MR 1760272 (2001a:35109), https://doi.org/10.1016/S0893-9659(00)00042-2
  • [5] Azmy S. Ackleh and Kazufumi Ito, An implicit finite difference scheme for the nonlinear size-structured population model, Numer. Funct. Anal. Optim. 18 (1997), no. 9-10, 865-884. MR 1485984 (98m:65133), https://doi.org/10.1080/01630569708816798
  • [6] B. M. Adams, H. T. Banks, J. E. Banks, and J. D. Stark, Population dynamics models in plant-insect herbivore-pesticide interactions, Math. Biosci. 196 (2005), no. 1, 39-64. MR 2156608 (2006c:92016), https://doi.org/10.1016/j.mbs.2004.09.001
  • [7] H. T. Banks, Jimena L. Davis, Stacey L. Ernstberger, Shuhua Hu, Elena Artimovich, and Arun K. Dhar, Experimental design and estimation of growth rate distributions in size-structured shrimp populations, Inverse Problems 25 (2009), no. 9, 095003, 28. MR 2540883 (2010k:62077), https://doi.org/10.1088/0266-5611/25/9/095003
  • [8] H. T. Banks, Stacey L. Ernstberger, and Shuhua Hu, Sensitivity equations for a size-structured population model, Quart. Appl. Math. 67 (2009), no. 4, 627-660. MR 2588228 (2011d:49038)
  • [9] H. T. Banks and F. Kappel, Transformation semigroups and $ L^1$-approximation for size structured population models, Semigroup Forum 38 (1989), no. 2, 141-155. Semigroups and differential operators (Oberwolfach, 1988). MR 976199 (90b:92040), https://doi.org/10.1007/BF02573227
  • [10] H. T. Banks, F. Kappel, and C. Wang, A semigroup formulation of a nonlinear size-structured distributed rate population model, Control and estimation of distributed parameter systems: nonlinear phenomena (Vorau, 1993) Internat. Ser. Numer. Math., vol. 118, Birkhäuser, Basel, 1994, pp. 1-19. MR 1313507 (96g:92008)
  • [11] D. M. Bortz, T. L. Jackson, K. A. Taylor, A. P. Thompson, and J. G. Younger, Klebsiella pneumoniae flocculation dynamics, Bull. Math. Biol. 70 (2008), no. 3, 745-768. MR 2393018 (2009a:92026), https://doi.org/10.1007/s11538-007-9277-y
  • [12] Àngel Calsina and Joan Saldaña, A model of physiologically structured population dynamics with a nonlinear individual growth rate, J. Math. Biol. 33 (1995), no. 4, 335-364. MR 1320428 (96i:92020), https://doi.org/10.1007/BF00176377
  • [13] Àngel Calsina and Manuel Sanchón, Stability and instability of equilibria of an equation of size structured population dynamics, J. Math. Anal. Appl. 286 (2003), no. 2, 435-452. MR 2008842 (2004g:92025), https://doi.org/10.1016/S0022-247X(03)00464-5
  • [14] H. Caswell, Matrix Population Models, Construction Analysis and Interpretation, Sinauer Associates, Massachusetts, 2001.
  • [15] M. Davidian and D.M. Giltinan, Nonlinear models for repeated measurement data, Chapman and Hall/CRC, New York, 1995.
  • [16] Jozsef Z. Farkas and Thomas Hagen, Stability and regularity results for a size-structured population model, J. Math. Anal. Appl. 328 (2007), no. 1, 119-136. MR 2285538 (2008f:35038), https://doi.org/10.1016/j.jmaa.2006.05.032
  • [17] Ariane Verdy and Hal Caswell, Sensitivity analysis of reactive ecological dynamics, Bull. Math. Biol. 70 (2008), no. 6, 1634-1659. MR 2430320 (2009h:92088), https://doi.org/10.1007/s11538-008-9312-7

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC (2010): 35L60, 92D25, 93B35

Retrieve articles in all journals with MSC (2010): 35L60, 92D25, 93B35


Additional Information

Keng Deng
Affiliation: Department of Mathematics, University of Louisiana at Lafayette, Lafayette, Louisiana 70504
Email: deng@louisiana.edu

Yi Wang
Affiliation: Department of Mathematics, University of Louisiana at Lafayette, Lafayette, Louisiana 70504
Email: yxw3828@louisiana.edu

DOI: https://doi.org/10.1090/qam/1366
Keywords: Nonlinear size-structured population model, sensitivity equations, finite difference approximation
Received by editor(s): February 6, 2013
Received by editor(s) in revised form: April 11, 2013
Published electronically: June 11, 2015
Article copyright: © Copyright 2015 Brown University

American Mathematical Society