Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 
 

 

A fundamental improvement to Ericksen-Leslie kinematics


Authors: Hossein Pourmatin, Amit Acharya and Kaushik Dayal
Journal: Quart. Appl. Math. 73 (2015), 435-466
MSC (2010): Primary 76A15
DOI: https://doi.org/10.1090/S0033-569X-2015-01375-5
Published electronically: March 17, 2015
MathSciNet review: 3400752
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We demonstrate theory and computations for finite-energy line defect solutions in an improvement of Ericksen-Leslie liquid crystal theory. Planar director fields are considered in two and three space dimensions, and we demonstrate straight as well as loop disclination solutions. The possibility of static balance of forces in the presence of a disclination and in the absence of flow and body forces is discussed. The work exploits an implicit conceptual connection between the Weingarten-Volterra characterization of possible jumps in certain potential fields and the Stokes-Helmholtz resolution of vector fields. The theoretical basis of our work is compared and contrasted with the theory of Volterra disclinations in elasticity. Physical reasoning precluding a gauge-invariant structure for the model is also presented.


References [Enhancements On Off] (What's this?)

  • [Ach01] A. Acharya. A model of crystal plasticity based on the theory of continuously distributed dislocations, Journal of the Mechanics and Physics of Solids 49(4):761-784, 2001.
  • [Ach10] Amit Acharya, New inroads in an old subject: plasticity, from around the atomic to the macroscopic scale, J. Mech. Phys. Solids 58 (2010), no. 5, 766-778. MR 2642309 (2011e:74025), https://doi.org/10.1016/j.jmps.2010.02.001
  • [AD12] Amit Acharya and Kaushik Dayal, Continuum mechanics of line defects in liquid crystals and liquid crystal elastomers, Quart. Appl. Math. 72 (2014), no. 1, 33-64. MR 3185131, https://doi.org/10.1090/S0033-569X-2013-01322-X
  • [AMZ10] Amit Acharya, Karsten Matthies, and Johannes Zimmer, Travelling wave solutions for a quasilinear model of field dislocation mechanics, J. Mech. Phys. Solids 58 (2010), no. 12, 2043-2053. MR 2757690 (2011i:74023), https://doi.org/10.1016/j.jmps.2010.09.008
  • [AT11] Amit Acharya and Luc Tartar, On an equation from the theory of field dislocation mechanics, Boll. Unione Mat. Ital. (9) 4 (2011), no. 3, 409-444. MR 2906769
  • [BS05] Paolo Biscari and Timothy J. Sluckin, Field-induced motion of nematic disclinations, SIAM J. Appl. Math. 65 (2005), no. 6, 2141-2157 (electronic). MR 2177743 (2006j:76011), https://doi.org/10.1137/040618898
  • [BS12] Paolo Biscari and Timothy J. Sluckin, A perturbative approach to the backflow dynamics of nematic defects, European J. Appl. Math. 23 (2012), no. 1, 181-200. MR 2873031, https://doi.org/10.1017/S0956792510000343
  • [BZ07] J. M. Ball and A. Zarnescu, Orientable and non-orientable director fields for liquid crystals, PAMM 7(1):1050701-1050704, 2007.
  • [CAK09] B. G. Chen, G. P. Alexander, and R. D. Kamien, Symmetry breaking in smectics and surface models of their singularities, Proceedings of the National Academy of Sciences 106(37):15577-15582, 2009.
  • [CF02] Paolo Cermelli and Eliot Fried, The evolution equation for a disclination in a nematic liquid crystal, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 458 (2002), no. 2017, 1-20. MR 1879457 (2002m:76005), https://doi.org/10.1098/rspa.2001.0876
  • [CK72] P. E. Cladis and M. Kléman, Non-singular disclinations of strength S = + 1 in nematics, Journal de Physique 33(5-6):591-598, 1972.
  • [CP89] J. Carr and R. L. Pego, Metastable patterns in solutions of $ u_t=\epsilon ^2u_{xx}-f(u)$, Comm. Pure Appl. Math. 42 (1989), no. 5, 523-576. MR 997567 (90f:35091), https://doi.org/10.1002/cpa.3160420502
  • [DeW73] R. DeWit, Theory of disclinations: IV. Straight disclinations, Journal of Research of the National Bureau of Standards - A. Physics and Chemistry 477A(5):607-658, 1973.
  • [Eri91] J. L. Ericksen, Liquid crystals with variable degree of orientation, Arch. Rational Mech. Anal. 113 (1990), no. 2, 97-120. MR 1079183 (92h:76010), https://doi.org/10.1007/BF00380413
  • [Eri95] J. L. Ericksen, Remarks concerning forces on line defects, Theoretical, experimental, and numerical contributions to the mechanics of fluids and solids, Z. Angew. Math. Phys. 46 (1995), no. Special Issue, S247-S271. MR 1359323 (97g:73088)
  • [Esh80] J. D. Eshelby, The force on a disclination in a liquid crystal, Philosophical Magazine A 42(3):359-367, 1980.
  • [Fra58] F. C. Frank, I. Liquid Crystals. On the Theory of Liquid Crystals, Discuss. Faraday Soc., 25:19-28, 1958.
  • [Han06] M. Hancock, Method of Green's functions, Lecture notes, 2006.
  • [HKGLGCC08] D. Harley Klein, L. Gary Leal, C. J. García-Cervera, and H. D. Ceniceros, Three-dimensional shear-driven dynamics of polydomain textures and disclination loops in liquid crystalline polymers, Journal of Rheology 52(3):837-863, 2008.
  • [HR06] D. K. Hwang and A. D. Rey, Computational studies of optical textures of twist disclination loops in liquid-crystal films by using the finite-difference time-domain method, J. Opt. Soc. Am. A 23(2):483-496, Feb. 2006.
  • [KB85] Kyozi Kawasaki and Helmut R. Brand, Gauge theory of continuous media with topological defects: uniaxial nematic liquid crystals and superfluid $ ^4{\rm He}$, Ann. Physics 160 (1985), no. 2, 420-440. MR 792172 (86i:82053), https://doi.org/10.1016/0003-4916(85)90151-4
  • [KF08] M. Kleman and J. Friedel, Disclinations, dislocations, and continuous defects: a reappraisal, Rev. Modern Phys. 80 (2008), no. 1, 61-115. MR 2399129 (2009d:82149), https://doi.org/10.1103/RevModPhys.80.61
  • [KL03] M. Kléman and O. D. Lavrentovich, Soft Matter Physics: An Introduction, Partially Ordered Systems, Springer, 2003.
  • [Klé73] M. Kléman, Defect densities in directional media, mainly liquid crystals, Philosophical Magazine 27(5):1057-1072, 1973.
  • [Krö81] E. Kröner, Continuum theory of defects, In: Physics of Defects, Les Houches Summer School, pp. 215-315, 1981.
  • [Krö93] E. Kröner, Configurational and material forces in the theory of defects in ordered structures, In Materials Science Forum, volume 123, pages 447-454, Trans. Tech. Publ., 1993.
  • [KVicv99] S. Kralj, E. G. Virga, and S. Žumer, Biaxial Torus Around Nematic Point Defects, Phys. Rev. E, 60:1858-1866, Aug. 1999.
  • [Les92] F. M. Leslie, Continuum theory for nematic liquid crystals, Contin. Mech. Thermodyn. 4 (1992), no. 3, 167-175. MR 1179949 (93f:76004), https://doi.org/10.1007/BF01130288
  • [LL00] Fang-Hua Lin and Chun Liu, Existence of solutions for the Ericksen-Leslie system, Arch. Ration. Mech. Anal. 154 (2000), no. 2, 135-156. MR 1784963 (2003a:76014), https://doi.org/10.1007/s002050000102
  • [LW00] Chun Liu and Noel J. Walkington, Approximation of liquid crystal flows, SIAM J. Numer. Anal. 37 (2000), no. 3, 725-741 (electronic). MR 1740379 (2000k:65174), https://doi.org/10.1137/S0036142997327282
  • [MZ10] Apala Majumdar and Arghir Zarnescu, Landau-De Gennes theory of nematic liquid crystals: the Oseen-Frank limit and beyond, Arch. Ration. Mech. Anal. 196 (2010), no. 1, 227-280. MR 2601074 (2011g:82122), https://doi.org/10.1007/s00205-009-0249-2
  • [Sar82] Sarben Sarkar, Hydrodynamics of nematic liquid crystals in the presence of a continuous density of disclinations, Journal of Physics C: Solid State Physics 15(32):6513, 1982.
  • [Set85] James P. Sethna, Frustration, curvature, and defect lines in metallic glasses and the cholesteric blue phase, Physical Review B 31(10):6278, 1985.
  • [SKH95] A. Sonnet, A. Kilian, and S. Hess, Alignment tensor versus director: Description of defects in nematic liquid crystals, Phys. Rev. E 52:718-722, Jul 1995.
  • [SS87] N. Schopohl and T.J. Sluckin, Defect core structure in nematic liquid crystals, Physical Review Letters 59(22):2582-2584, 1987.
  • [Ste04] I. W. Stewart, The Static and Dynamic Continuum Theory of Liquid Crystals, Taylor and Francis, 2004.
  • [Wil67] J. R. Willis, Second-order effects of dislocations in anisotropic crystals, International Journal of Engineering Science 5(2):171 - 190, 1967.
  • [YFMW09] X. Yang, M. Forest, W. Mullins, and Q. Wang, Dynamic defect morphology and hydrodynamics of sheared nematic polymers in two space dimensions, Journal of Rheology 53(3):589-615, 2009.

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC (2010): 76A15

Retrieve articles in all journals with MSC (2010): 76A15


Additional Information

Hossein Pourmatin
Affiliation: Civil and Environmental Engineering, Carnegie Mellon University
Email: mpourmat@andrew.cmu.edu

Amit Acharya
Affiliation: Civil and Environmental Engineering, Carnegie Mellon University
Email: acharyaamit@cmu.edu

Kaushik Dayal
Affiliation: Civil and Environmental Engineering, Carnegie Mellon University
Email: kaushik@cmu.edu

DOI: https://doi.org/10.1090/S0033-569X-2015-01375-5
Received by editor(s): May 25, 2013
Published electronically: March 17, 2015
Article copyright: © Copyright 2015 Brown University

American Mathematical Society