Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 
 

 

Edge waves with longshore currents


Author: Hung-Chu Hsu
Journal: Quart. Appl. Math. 73 (2015), 593-598
MSC (2010): Primary 76B15, 35B36, 74G05
DOI: https://doi.org/10.1090/qam/1399
Published electronically: June 16, 2015
MathSciNet review: 3400761
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We present an exact solution to the nonlinear governing equations for nonlinear edge waves with an underlying longshore current, propagating over a plane-sloping beach. By performing an analysis in Lagrangian variables we describe the flow characteristics in great detail.


References [Enhancements On Off] (What's this?)

  • [1] P. H. Leblond and L. A. Mysak, Waves in the Ocean, Elsevier, 1978, 602 pp.
  • [2] G. G. Stokes, Report on recent researches in hydrodynamics, Rep. 16th Brit. Assoc. Adv. Sci. Southampton, Murray, London, 1846, 1-20.
  • [3] Horace Lamb, Hydrodynamics, reprint of the 1932 6th edition, with a foreword by R. A. Caflisch [Russel E. Caflisch]. Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1993. MR 1317348 (96f:76001)
  • [4] F. Ursell, Edge waves on a sloping beach, Proc. Roy. Soc. London. Ser. A. 214 (1952), 79-97. MR 0050420 (14,326f)
  • [5] Ulf Torsten Ehrenmark, Oblique wave incidence on a plane beach: the classical problem revisited, J. Fluid Mech. 368 (1998), 291-319. MR 1640061 (99j:76007), https://doi.org/10.1017/S0022112098001888
  • [6] G. B. Whitham, Nonlinear effects in edge waves, J. Fluid Mech. 74 (1976), no. 2, 353-368. MR 0421326 (54 #9331)
  • [7] H. Yeh, Nonlinear progressive edge waves: their instability and evolution, J. Fluid Mech. 152 (1985), 479-499.
  • [8] K. M. Mok and H. Yeh, On the mass transport of progressive edge waves, Physics of Fluids 11(10) (1999), 2906-2924.
  • [9] C. Yih, Note on edge waves in a stratified fluid, J. Fluid Mech. 24 (1966), 765-767.
  • [10] Erik Mollo-Christensen, Allowable discontinuities in a Gerstner wave field, Phys. Fluids 25 (1982), no. 4, 586-587. MR 658268 (84c:76074), https://doi.org/10.1063/1.863802
  • [11] F. Gerstner, Theorie der Wellen samt einer daraus abgeleiteten Theorie der Deichprofile (in German), Ann. Phys. 2 (1809), 412-445.
  • [12] Adrian Constantin, Edge waves along a sloping beach, J. Phys. A 34 (2001), no. 45, 9723-9731. MR 1876166 (2002j:76015), https://doi.org/10.1088/0305-4470/34/45/311
  • [13] Mats Ehrnström, Joachim Escher, and Bogdan-Vasile Matioc, Two-dimensional steady edge waves. I. Periodic waves, Wave Motion 46 (2009), no. 6, 363-371. MR 2598633 (2011i:76017), https://doi.org/10.1016/j.wavemoti.2009.06.002
  • [14] David Henry and Octavian G. Mustafa, Existence of solutions for a class of edge wave equations, Discrete Contin. Dyn. Syst. Ser. B 6 (2006), no. 5, 1113-1119 (electronic). MR 2224873 (2007a:76016), https://doi.org/10.3934/dcdsb.2006.6.1113
  • [15] R. S. Johnson, Edge waves: theories past and present, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 365 (2007), no. 1858, 2359-2376. MR 2329153 (2008f:76025), https://doi.org/10.1098/rsta.2007.2013
  • [16] Raphael Stuhlmeier, On edge waves in stratified water along a sloping beach, J. Nonlinear Math. Phys. 18 (2011), no. 1, 127-137. MR 2786939 (2012g:76033), https://doi.org/10.1142/S1402925111001210
  • [17] Anca-Voichita Matioc, An exact solution for geophysical equatorial edge waves over a sloping beach, J. Phys. A 45 (2012), no. 36, 365501, 10. MR 2967917, https://doi.org/10.1088/1751-8113/45/36/365501
  • [18] Adrian Constantin, Nonlinear water waves with applications to wave-current interactions and tsunamis, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 81, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2011. MR 2867413
  • [19] David Henry, On Gerstner's water wave, J. Nonlinear Math. Phys. 15 (2008), suppl. 2, 87-95. MR 2434727 (2009k:76020), https://doi.org/10.2991/jnmp.2008.15.s2.7
  • [20] A. Constantin, An exact solution for equatorially trapped waves, J. Geophys. Res. 117 (2012), C05029.
  • [21] A. Constantin and P. Germain, Instability of some equatorially trapped waves, J. Geophys. Res. 118 (2013), 1-9.
  • [22] Hung-Chu Hsu, An exact solution for equatorial waves, Monatsh. Math. 176 (2015), no. 1, 143-152. MR 3296207, https://doi.org/10.1007/s00605-014-0618-2
  • [23] A. Constantin, Some three-dimensional nonlinear equatorial flows, J. Phys. Oceanogr. 43 (2013), 165-175.
  • [24] A. Constantin, Some nonlinear, equatorial trapped, non-hydrostatic, internal geophysical waves, J. Phys. Oceanogr. (2013), DOI 10.1175/JPO-D-13-0174.1.
  • [25] Hung-Chu Hsu, Some nonlinear internal equatorial flows, Nonlinear Anal. Real World Appl. 18 (2014), 69-74. MR 3176298, https://doi.org/10.1016/j.nonrwa.2013.12.011
  • [26] Hung-Chu Hsu, An exact solution for nonlinear internal equatorial waves in the $ f$-plane approximation, J. Math. Fluid Mech. 16 (2014), no. 3, 463-471. MR 3247362, https://doi.org/10.1007/s00021-014-0168-3
  • [27] Adrian Constantin, The trajectories of particles in Stokes waves, Invent. Math. 166 (2006), no. 3, 523-535. MR 2257390 (2007j:35240), https://doi.org/10.1007/s00222-006-0002-5
  • [28] D. Henry, On the deep-water Stokes flow, Int. Math. Res. Not. 22 (2008), DOI 10.1093/imrn/rnn071.
  • [29] Adrian Constantin and Walter Strauss, Pressure beneath a Stokes wave, Comm. Pure Appl. Math. 63 (2010), no. 4, 533-557. MR 2604871 (2011b:76017), https://doi.org/10.1002/cpa.20299
  • [30] P. A. Howd, A. J. Bowen, and R. A. Holman, Edge waves in the presence of strong longshore currents, J. Geophys. Res. 97 (1992), 11357-11371.
  • [31] R. S. Johnson, A modern introduction to the mathematical theory of water waves, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 1997. MR 1629555 (99m:76017)

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC (2010): 76B15, 35B36, 74G05

Retrieve articles in all journals with MSC (2010): 76B15, 35B36, 74G05


Additional Information

Hung-Chu Hsu
Affiliation: Tainan Hydraulics Laboratory, National Cheng Kung University,Tainan 701, Taiwan
Email: hchsu@thl.ncku.edu.tw

DOI: https://doi.org/10.1090/qam/1399
Received by editor(s): December 21, 2013
Received by editor(s) in revised form: January 19, 2014
Published electronically: June 16, 2015
Additional Notes: The author is grateful to the referee for several useful suggestions
Article copyright: © Copyright 2015 Brown University

American Mathematical Society