Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 
 

 

Asymptotic estimates of viscoelastic Green's functions near the wavefront


Author: Andrzej Hanyga
Journal: Quart. Appl. Math. 73 (2015), 679-692
MSC (2010): Primary 74D05
DOI: https://doi.org/10.1090/qam/1400
Published electronically: September 14, 2015
MathSciNet review: 3432278
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Asymptotic behavior of viscoelastic Green's functions near the wavefront is expressed in terms of a causal function $ g(t)$ defined in Hanyga and Seredyńska (2012) in connection with the Kramers-Kronig dispersion relations. Viscoelastic Green's functions exhibit a discontinuity at the wavefront if $ g(0) < \infty $. Estimates of continuous and discontinuous viscoelastic Green's functions near the wavefront are obtained.


References [Enhancements On Off] (What's this?)

  • [1] N. H. Bingham, C. M. Goldie, and J. L. Teugels, Regular variation, Encyclopedia of Mathematics and its Applications, vol. 27, Cambridge University Press, Cambridge, 1987. MR 898871 (88i:26004)
  • [2] M. Caputo and F. Mainardi, New dissipation model based on memory mechanism, Pure Applied Geophysics 91 (1976), 134-147. MR 2382783
  • [3] J. M. Carcione, F. Cavallini, F. Mainardi, and A. Hanyga, Time-domain seismic modeling of constant-Q wave propagation using fractional derivatives, Pure Appl. Geophys. 159 (2002), 1714-1736.
  • [4] R. M. Christensen, Theory of viscoelasticity: An introduction, Academic Press, New York, 1971.
  • [5] Boa-Teh Chu, Stress waves in isotropic linear viscoelastic materials. I, J. Mécanique 1 (1962), 439-462. MR 0149753 (26 #7238)
  • [6] W. Desch and R. C. Grimmer, Initial-boundary value problems for integro-differential equations, Integro-differential evolution equations and applications (Trento, 1984), J. Integral Equations 10 (1985), no. 1-3, suppl., 73-97. MR 831236 (87f:45025)
  • [7] W. Desch and R. Grimmer, Smoothing properties of linear Volterra integro-differential equations, SIAM J. Math. Anal. 20 (1989), no. 1, 116-132. MR 977492 (89m:45014), https://doi.org/10.1137/0520009
  • [8] J. M. Greenberg, The existence of steady shock waves for a class of nonlinear dissipative materials with memory, Quart. Appl. Math. 26 (1968), 27-34.
  • [9] G. Gripenberg, S.-O. Londen, and O. Staffans, Volterra integral and functional equations, Encyclopedia of Mathematics and its Applications, vol. 34, Cambridge University Press, Cambridge, 1990. MR 1050319 (91c:45003)
  • [10] Andrzej Hanyga, Wave propagation in linear viscoelastic media with completely monotonic relaxation moduli, Wave Motion 50 (2013), no. 5, 909-928. MR 3070949, https://doi.org/10.1016/j.wavemoti.2013.03.002
  • [11] A. Hanyga, Dispersion and attenuation for an acoustic wave equation consistent with viscoelasticity, J. Comput. Acoust. 22 (2014), no. 3, 1450006, 22 pp.. MR 3232047
  • [12] A. Hanyga, Attenuation and shock waves in linear hereditary viscoelastic media. Strick-Mainardi and Jeffreys-Lomnitz-Strick creep compliances., arXiv:1401.3094 [math-ph] (2014).
  • [13] A. Hanyga and M. Seredyńska, Some effects of the memory kernel singularity on wave propagation and inversion in poroelastic media, I: Forward modeling, Geophys. J. Int. 137 (1999), 319-335.
  • [14] A. Hanyga and M. Seredyńska, Asymptotic wavefront expansions in hereditary media with singular memory kernels, Quart. Appl. Math. LX (2002), 213-244. MR 1900491 (2004f:35177)
  • [15] Andrzej Hanyga and Małgorzata Seredyńska, Relations between relaxation modulus and creep compliance in anisotropic linear viscoelasticity, J. Elasticity 88 (2007), no. 1, 41-61. MR 2337270 (2008j:74010), https://doi.org/10.1007/s10659-007-9112-6
  • [16] A. Hanyga and M. Seredyńska, Relaxation, dispersion, attenuation and finite propagation speed in viscoelastic media, J. Math. Phys. 51 (2010), no. 9, 092901-092916. MR 2742817 (2011j:74067)
  • [17] S. Havriliak and S. Negami, A complex plane analysis of alpha-dispersions in some polymer systems, J. Polym. Sci. 14 (1966), 99-117.
  • [18] W. J. Hrusa and M. Renardy, On wave propagation in linear viscoelasticity, Quart. Appl. Math. 43 (1985), no. 2, 237-254. MR 793532 (86j:45022)
  • [19] N. Jacob, Pseudo differential operators and Markov processes. Vol. I, Fourier analysis and semigroups, Imperial College Press, London, 2001. MR 1873235 (2003a:47104)
  • [20] E. Kjartansson, Constant Q-wave propagation and attenuation, J. Geophys. Res. 84 (1979), 4737-4748.
  • [21] A. A. Lokshin and Yu. V. Suvorova, Matematicheskaya teoriya rasprostraneniya voln v sredakh s pamyatyu, Moskov. Gos. Univ., Moscow, 1982 (Russian). MR 676810 (84m:73031)
  • [22] F. Mainardi, Fractional calculus and waves in linear viscoelasticity, World-Scientific, 2010. MR 2676137 (2011e:74002)
  • [23] A. Molinari, Viscoélasticité linéaire et functions complètement monotones, J. Mécanique 12 (1975), 541-553. MR 0368558 (51 #4799)
  • [24] S. P. Näsholm and S. Holm, On a fractional Zener elastic wave equation, Fract. Calc. Appl. Anal. 16 (2013), 26-50. MR 3016640
  • [25] J. Prüss, Positivity and regularity of hyperbolic Volterra equations in Banach spaces, Math. Ann. 279 (1987), 317-344. MR 0919509 (89h:45004)
  • [26] M. Renardy, W. J. Hrusa, and J. A. Nohel, Mathematical problems in viscoelasticity, Longman Scientific & Technical, Essex; John Wiley, New York, 1987. MR 0919738 (89b:35134)
  • [27] René L. Schilling, Renming Song, and Zoran Vondraček, Bernstein functions, Theory and applications, de Gruyter Studies in Mathematics, vol. 37, Walter de Gruyter & Co., Berlin, 2010. MR 2598208 (2011d:60060)
  • [28] Peter Straka, Mark M. Meerschaert, Robert J. McGough, and Yuzhen Zhou, Fractional wave equations with attenuation, Fract. Calc. Appl. Anal. 16 (2013), no. 1, 262-272. MR 3016653, https://doi.org/10.2478/s13540-013-0016-9
  • [29] E. Strick, A predicted pedestal effect for a pulse propagating in constant Q solids, Geophysics 35 (1970), 387-403.
  • [30] E. Strick, An explanation of observed time discrepancies between continuous and conventional well velocity surveys, Geophysics 36 (1971), 285-295.
  • [31] P. J. Torvik and R. L. Bagley, On the appearance of the fractional derivative in the behavior of real materials, J. Appl. Mechanics 51 (1983), 294-298.

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC (2010): 74D05

Retrieve articles in all journals with MSC (2010): 74D05


Additional Information

Andrzej Hanyga
Affiliation: ul. Bitwy Warszawskiej 1920r. 14/52, Warszawa, Poland
Email: ajhbergen@yahoo.com

DOI: https://doi.org/10.1090/qam/1400
Keywords: Viscoelasticity, wavefront, attenuation, dispersion, shock wave, Bernstein function
Received by editor(s): January 29, 2014
Published electronically: September 14, 2015
Article copyright: © Copyright 2015 Brown University

American Mathematical Society