Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X



Quasineutral limit of the pressureless Euler-Poisson equation for ions

Authors: Xueke Pu and Boling Guo
Journal: Quart. Appl. Math. 74 (2016), 245-273
MSC (2010): Primary 35Q35, 35B25; Secondary 35C20
DOI: https://doi.org/10.1090/qam/1424
Published electronically: March 29, 2016
MathSciNet review: 3505603
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, we consider the quasineutral limit of the Euler-Poisson equation for cold ions when the Debye length tends to zero. In the cold ion case the Euler-Poisson equation is pressureless and hence fails to be Friedrich symmetrizable, excluding the application of the PsDO energy estimates method of Grenier to obtain uniform estimates independent of $ \varepsilon $. To overcome this difficulty, we use $ \varepsilon $-weighted norms which combine energy estimates in different levels with weights depending on $ \varepsilon $. Finally, that the quasineutral regimes are the compressible Euler equations is proven for well prepared initial data. As a natural extension, we also obtain the zero temperature limit of the Euler-Poisson equation.

References [Enhancements On Off] (What's this?)

  • [1] Y. Brenier, Convergence of the Vlasov-Poisson system to the incompressible Euler equations, Comm. Partial Differential Equations 25 (2000), no. 3-4, 737-754. MR 1748352 (2001c:76124), https://doi.org/10.1080/03605300008821529
  • [2] Stéphane Cordier and Emmanuel Grenier, Quasineutral limit of an Euler-Poisson system arising from plasma physics, Comm. Partial Differential Equations 25 (2000), no. 5-6, 1099-1113. MR 1759803 (2001c:82078), https://doi.org/10.1080/03605300008821542
  • [3] P. Degond, H. Liu, D. Savelief, and M.-H. Vignal, Numerical approximation of the Euler-Poisson-Boltzmann model in the quasineutral limit, J. Sci. Comput. 51 (2012), no. 1, 59-86. MR 2891946, https://doi.org/10.1007/s10915-011-9495-1
  • [4] David Gérard-Varet, Daniel Han-Kwan, and Frédéric Rousset, Quasineutral limit of the Euler-Poisson system for ions in a domain with boundaries, Indiana Univ. Math. J. 62 (2013), no. 2, 359-402. MR 3158514, https://doi.org/10.1512/iumj.2013.62.4900
  • [5] E. Grenier, Oscillatory perturbations of the Navier-Stokes equations, J. Math. Pures Appl. (9) 76 (1997), no. 6, 477-498. MR 1465607 (98h:35189), https://doi.org/10.1016/S0021-7824(97)89959-X
  • [6] E. Grenier, Pseudo-differential energy estimates of singular perturbations, Comm. Pure Appl. Math. 50 (1997), no. 9, 821-865. MR 1459589 (98g:35014), https://doi.org/10.1002/(SICI)1097-0312(199709)50:9$ \langle $821::AID-CPA2$ \rangle $3.3.CO;2-3
  • [7] Y. Guo, A.D. Ionescu and B. Pausader, Global solutions of the Euler-Maxwell two-fluid system in 3D. arXiv: 1303.1060v1.
  • [8] Yan Guo and Benoit Pausader, Global smooth ion dynamics in the Euler-Poisson system, Comm. Math. Phys. 303 (2011), no. 1, 89-125. MR 2775116 (2012e:82075), https://doi.org/10.1007/s00220-011-1193-1
  • [9] Yan Guo and Xueke Pu, KdV limit of the Euler-Poisson system, Arch. Ration. Mech. Anal. 211 (2014), no. 2, 673-710. MR 3149069, https://doi.org/10.1007/s00205-013-0683-z
  • [10] Daniel Han-Kwan, Quasineutral limit of the Vlasov-Poisson system with massless electrons, Comm. Partial Differential Equations 36 (2011), no. 8, 1385-1425. MR 2825596 (2012g:35349), https://doi.org/10.1080/03605302.2011.555804
  • [11] Daniel Han-Kwan, From Vlasov-Poisson to Korteweg-de Vries and Zakharov-Kuznetsov, Comm. Math. Phys. 324 (2013), no. 3, 961-993. MR 3123542, https://doi.org/10.1007/s00220-013-1825-8
  • [12] Song Jiang, QiangChang Ju, HaiLiang Li, and Yong Li, Quasi-neutral limit of the full bipolar Euler-Poisson system, Sci. China Math. 53 (2010), no. 12, 3099-3114. MR 2746309 (2011h:35223), https://doi.org/10.1007/s11425-010-4114-4
  • [13] Tosio Kato and Gustavo Ponce, Commutator estimates and the Euler and Navier-Stokes equations, Comm. Pure Appl. Math. 41 (1988), no. 7, 891-907. MR 951744 (90f:35162), https://doi.org/10.1002/cpa.3160410704
  • [14] N. Krall and A. Trivelpiece, Principles of plasma physics, San Francisco Press, 1986.
  • [15] David Lannes, Felipe Linares, and Jean-Claude Saut, The Cauchy problem for the Euler-Poisson system and derivation of the Zakharov-Kuznetsov equation, Studies in phase space analysis with applications to PDEs, Progr. Nonlinear Differential Equations Appl., vol. 84, Birkhäuser/Springer, New York, 2013, pp. 181-213. MR 3185896, https://doi.org/10.1007/978-1-4614-6348-1_10
  • [16] Grégoire Loeper, Quasi-neutral limit of the Euler-Poisson and Euler-Monge-Ampère systems, Comm. Partial Differential Equations 30 (2005), no. 7-9, 1141-1167. MR 2180297 (2007b:35267), https://doi.org/10.1080/03605300500257545
  • [17] A. Majda, Compressible fluid flow and systems of conservation laws in several space variables, Applied Mathematical Sciences, vol. 53, Springer-Verlag, New York, 1984. MR 748308 (85e:35077)
  • [18] Yue-Jun Peng and Shu Wang, Convergence of compressible Euler-Maxwell equations to incompressible Euler equations, Comm. Partial Differential Equations 33 (2008), no. 1-3, 349-376. MR 2398233 (2009b:35339), https://doi.org/10.1080/03605300701318989
  • [19] Xueke Pu, Dispersive limit of the Euler-Poisson system in higher dimensions, SIAM J. Math. Anal. 45 (2013), no. 2, 834-878. MR 3045650, https://doi.org/10.1137/120875648
  • [20] Xueke Pu, Quasineutral limit of the pressureless Euler-Poisson equation, Appl. Math. Lett. 30 (2014), 33-37. MR 3162389, https://doi.org/10.1016/j.aml.2013.12.008
  • [21] M. Slemrod and N. Sternberg, Quasi-neutral limit for Euler-Poisson system, J. Nonlinear Sci. 11 (2001), no. 3, 193-209. MR 1852940 (2002f:35189), https://doi.org/10.1007/s00332-001-0004-9
  • [22] Shlomo Engelberg, Hailiang Liu, and Eitan Tadmor, Critical thresholds in Euler-Poisson equations, Special Issue dedicated to Professors Ciprian Foias and Roger Temam (Bloomington, IN, 2000), Indiana Univ. Math. J. 50 (2001), 109-157. MR 1855666 (2002i:35149), https://doi.org/10.1512/iumj.2001.50.2177
  • [23] Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095 (44 #7280)
  • [24] Shu Wang, Quasineutral limit of Euler-Poisson system with and without viscosity, Comm. Partial Differential Equations 29 (2004), no. 3-4, 419-456. MR 2041602 (2005i:35225), https://doi.org/10.1081/PDE-120030403
  • [25] Shu Wang and Song Jiang, The convergence of the Navier-Stokes-Poisson system to the incompressible Euler equations, Comm. Partial Differential Equations 31 (2006), no. 4-6, 571-591. MR 2233033 (2008f:35319), https://doi.org/10.1080/03605300500361487

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC (2010): 35Q35, 35B25, 35C20

Retrieve articles in all journals with MSC (2010): 35Q35, 35B25, 35C20

Additional Information

Xueke Pu
Affiliation: Department of Mathematics, Chongqing University, Chongqing 401331, People’s Republic of China
Email: xuekepu@cqu.edu.cn

Boling Guo
Affiliation: Institute of Applied Physics and Computational Mathematics, P.O. Box 8009, Beijing, People’s Republic of China, 100088
Email: gbl@iapcm.ac.cn

DOI: https://doi.org/10.1090/qam/1424
Keywords: Euler-Poisson equation, quasineutral limit, compressible Euler equation
Received by editor(s): August 14, 2014
Published electronically: March 29, 2016
Additional Notes: The first author was supported in part by NSFC (11471057) and Natural Science Foundation Project of CQ CSTC (cstc2014jcyjA50020).
Article copyright: © Copyright 2016 Brown University

American Mathematical Society