Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 
 

 

Sharp local well-posedness of KdV type equations with dissipative perturbations


Authors: Xavier Carvajal and Mahendra Panthee
Journal: Quart. Appl. Math. 74 (2016), 571-594
MSC (2010): Primary 35A01, 35Q53
DOI: https://doi.org/10.1090/qam/1437
Published electronically: June 16, 2016
MathSciNet review: 3518228
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this work, we study the initial value problems associated to some linear perturbations of the KdV equation. Our focus is on the well-posedness issues for initial data given in the $ L^2$-based Sobolev spaces. We derive a bilinear estimate in a space with weight in the time variable and obtain sharp local well-posedness results.


References [Enhancements On Off] (What's this?)

  • [1] Borys Alvarez Samaniego, The Cauchy problem for a nonlocal perturbation of the KdV equation, Differential Integral Equations 16 (2003), no. 10, 1249-1280. MR 2014809 (2004m:35240)
  • [2] D. J. Benney, Long waves on liquid films, J. Math. and Phys. 45 (1966), 150-155. MR 0201125 (34 #1010)
  • [3] H. A. Biagioni, J. L. Bona, R. J. Iório Jr., and M. Scialom, On the Korteweg-de Vries-Kuramoto-Sivashinsky equation, Adv. Differential Equations 1 (1996), no. 1, 1-20. MR 1357952 (96j:35211)
  • [4] H. A. Biagioni and F. Linares, On the Benney-Lin and Kawahara equations, J. Math. Anal. Appl. 211 (1997), no. 1, 131-152. MR 1460163 (98e:35140), https://doi.org/10.1006/jmaa.1997.5438
  • [5] J. Bourgain, Periodic Korteweg de Vries equation with measures as initial data, Selecta Math. (N.S.) 3 (1997), no. 2, 115-159. MR 1466164 (2000i:35173), https://doi.org/10.1007/s000290050008
  • [6] J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. II. The KdV-equation, Geom. Funct. Anal. 3 (1993), no. 3, 209-262. MR 1215780 (95d:35160b), https://doi.org/10.1007/BF01895688
  • [7] X. Carvajal and M. Panthee, A note on local well-posedness of generalized KdV type equations with dissipative perturbations, arXiv:1305.0511 (2013).
  • [8] Xavier Carvajal and Mahendra Panthee, Well-posedness of KdV type equations, Electron. J. Differential Equations (2012), No. 40, 15pp.. MR 2900365 (2012m:35276)
  • [9] Xavier Carvajal and Mahendra Panthee, Well-posedness for some perturbations of the KdV equation with low regularity data, Electron. J. Differential Equations (2008), No. 02, 18pp.. MR 2368889 (2008j:35152)
  • [10] Xavier Carvajal and Marcia Scialom, On the well-posedness for the generalized Ostrovsky, Stepanyams and Tsimring equation, Nonlinear Anal. 62 (2005), no. 7, 1277-1287. MR 2154109 (2006c:35255), https://doi.org/10.1016/j.na.2005.04.032
  • [11] Xavier Carvajal Paredes and Ricardo A. Pastran, Well-posedness for a family of perturbations of the KdV equation in periodic Sobolev spaces of negative order, Commun. Contemp. Math. 15 (2013), no. 6, 1350005, 26pp.. MR 3139405
  • [12] T. Cazenave, An introduction to nonlinear Schrödinger equations, Textos de Metodos Matemáticos 22 (Rio de Janeiro), 1989.
  • [13] B. I. Cohen, J. A. Krommes, W. M. Tang, and M. N. Rosenbluth, Non-linear saturation of the dissipative trapped-ion mode by mode coupling, Nuclear Fusion 16 9 (1976), 971-992.
  • [14] Daniel B. Dix, Nonuniqueness and uniqueness in the initial-value problem for Burgers' equation, SIAM J. Math. Anal. 27 (1996), no. 3, 708-724. MR 1382829 (97c:35174), https://doi.org/10.1137/0527038
  • [15] Amin Esfahani, Sharp well-posedness of the Ostrovsky, Stepanyams and Tsimring equation, Math. Commun. 18 (2013), no. 2, 323-335. MR 3138434
  • [16] Axel Grünrock, A bilinear Airy-estimate with application to gKdV-3, Differential Integral Equations 18 (2005), no. 12, 1333-1339. MR 2174975 (2007b:35282)
  • [17] Carlos E. Kenig, Gustavo Ponce, and Luis Vega, On the ill-posedness of some canonical dispersive equations, Duke Math. J. 106 (2001), no. 3, 617-633. MR 1813239 (2002c:35265), https://doi.org/10.1215/S0012-7094-01-10638-8
  • [18] Carlos E. Kenig, Gustavo Ponce, and Luis Vega, Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle, Comm. Pure Appl. Math. 46 (1993), no. 4, 527-620. MR 1211741 (94h:35229), https://doi.org/10.1002/cpa.3160460405
  • [19] Carlos E. Kenig, Gustavo Ponce, and Luis Vega, A bilinear estimate with applications to the KdV equation, J. Amer. Math. Soc. 9 (1996), no. 2, 573-603. MR 1329387 (96k:35159), https://doi.org/10.1090/S0894-0347-96-00200-7
  • [20] Luc Molinet, Francis Ribaud, and Abdellah Youssfi, Ill-posedness issues for a class of parabolic equations, Proc. Roy. Soc. Edinburgh Sect. A 132 (2002), no. 6, 1407-1416. MR 1950814 (2003m:35240)
  • [21] Luc Molinet and Francis Ribaud, On the low regularity of the Korteweg-de Vries-Burgers equation, Int. Math. Res. Not. 37 (2002), 1979-2005. MR 1918236 (2003e:35272), https://doi.org/10.1155/S1073792802112104
  • [22] L. A. Ostrovsky, Yu. A. Stepanyants, and L. Sh. Tsimring, Radiation instability in a stratified shear flow, Int. J. Non-Linear Mech. 19 (1984), 151-161.
  • [23] E. Ott and N. Sudan, Damping of solitary waves, Phys. Fluids 13 (1970), no. 6, 1432-1434.
  • [24] Msanori Otani, Well-posedness of the generalized Benjamin-Ono-Burgers equations in Sobolev spaces of negative order, Osaka J. Math. 43 (2006), no. 4, 935-965. MR 2303557 (2008d:35202)
  • [25] Didier Pilod, Sharp well-posedness results for the Kuramoto-Velarde equation, Commun. Pure Appl. Anal. 7 (2008), no. 4, 867-881. MR 2393403 (2009m:35446), https://doi.org/10.3934/cpaa.2008.7.867
  • [26] Terence Tao, Nonlinear dispersive equations: Local and global analysis, CBMS Regional Conference Series in Mathematics, vol. 106, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 2006. MR 2233925 (2008i:35211)
  • [27] Terence Tao, Multilinear weighted convolution of $ L^2$-functions, and applications to nonlinear dispersive equations, Amer. J. Math. 123 (2001), no. 5, 839-908. MR 1854113 (2002k:35283)
  • [28] Jeffrey Topper and Takuji Kawahara, Approximate equations for long nonlinear waves on a viscous fluid, J. Phys. Soc. Japan 44 (1978), no. 2, 663-666. MR 0489338 (58 #8769)
  • [29] Nickolay Tzvetkov, Remark on the local ill-posedness for KdV equation, C. R. Acad. Sci. Paris Sér. I Math. 329 (1999), no. 12, 1043-1047 (English, with English and French summaries). MR 1735881 (2001f:35359), https://doi.org/10.1016/S0764-4442(00)88471-2

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC (2010): 35A01, 35Q53

Retrieve articles in all journals with MSC (2010): 35A01, 35Q53


Additional Information

Xavier Carvajal
Affiliation: Instituto de Matemática - UFRJ, Av. Horácio Macedo, Centro de Tecnologia, Cidade Universitária, Ilha do Fundão, 21941-972 Rio de Janeiro, RJ, Brazil
Email: carvajal@im.ufrj.br

Mahendra Panthee
Affiliation: Departamento de Matemática - UNICAMP, R. Sergio Buarque de Holanda 651, 13083-859, Campinas, SP, Brazil
Email: mpanthee@ime.unicamp.br

DOI: https://doi.org/10.1090/qam/1437
Keywords: Initial value problem, well-posedness, KdV equation, dispersive-dissipative models
Received by editor(s): October 19, 2015
Published electronically: June 16, 2016
Article copyright: © Copyright 2016 Brown University

American Mathematical Society