Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 
 

 

On the high frequency limit of the LLL equation


Authors: Pierre Germain and Laurent Thomann
Journal: Quart. Appl. Math. 74 (2016), 633-641
MSC (2010): Primary 37Kxx
DOI: https://doi.org/10.1090/qam/1435
Published electronically: June 17, 2016
MathSciNet review: 3539025
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We derive heuristically an integro-differential equation, as well as a shell model, governing the dynamics of the Lowest Landau Level equation in a high frequency regime.


References [Enhancements On Off] (What's this?)

  • [1] A. Aftalion, X. Blanc, and F. Nier, Lowest Landau level functional and Bargmann spaces for Bose-Einstein condensates, J. Funct. Anal. 241 (2006), no. 2, 661-702. MR 2271933 (2008c:82052), https://doi.org/10.1016/j.jfa.2006.04.027
  • [2] Amandine Aftalion and Sylvia Serfaty, Lowest Landau level approach in superconductivity for the Abrikosov lattice close to $ H_{c_2}$, Selecta Math. (N.S.) 13 (2007), no. 2, 183-202. MR 2361092 (2008m:82093), https://doi.org/10.1007/s00029-007-0043-7
  • [3] Luca Biferale, Shell models of energy cascade in turbulence, Annual review of fluid mechanics, Vol. 35, Annu. Rev. Fluid Mech., vol. 35, Annual Reviews, Palo Alto, CA, 2003, pp. 441-468. MR 1967019 (2004b:76074), https://doi.org/10.1146/annurev.fluid.35.101101.161122
  • [4] L. O. Baksmaty, S. J. Woo, S. Choi, and N. P. Bigelow,
    Tkachenko waves in rapidly rotating Bose-Einstein condensates,
    Phys. Rev. Lett. 92 (2004), 160405.
  • [5] J. Colliander, M. Keel, G. Staffilani, H. Takaoka, and T. Tao, Transfer of energy to high frequencies in the cubic defocusing nonlinear Schrödinger equation, Invent. Math. 181 (2010), no. 1, 39-113. MR 2651381 (2011f:35320), https://doi.org/10.1007/s00222-010-0242-2
  • [6] James E. Colliander, Jeremy L. Marzuola, Tadahiro Oh, and Gideon Simpson, Behavior of a model dynamical system with applications to weak turbulence, Exp. Math. 22 (2013), no. 3, 250-264. MR 3171091, https://doi.org/10.1080/10586458.2013.793110
  • [7] M. Escobedo and J. Velazquez,
    On the theory of weak turbulence for the nonlinear Schrödinger equation.
    Preprint, arXiv:1305.5746.
  • [8] E. Faou, P. Germain, and Z. Hani,
    The weakly nonlinear large-box limit of the 2D cubic nonlinear Schrödinger equation, J. Amer. Math. Soc., published electronically on October 20, 2015.
  • [9] P. Germain, P. Gérard, and L. Thomann,
    On the Lowest Landau Level equation.
    In preparation.
  • [10] P. Germain, Z. Hani and L. Thomann,
    On the continuous resonant equation for NLS. I. Deterministic analysis.
    J. Math. Pures Appl. 9 105 (2016), no. 1, 131-163.
  • [11] Pierre Germain, Zaher Hani, and Laurent Thomann, On the continuous resonant equation for NLS, II: Statistical study, Anal. PDE 8 (2015), no. 7, 1733-1756. MR 3399137, https://doi.org/10.2140/apde.2015.8.1733
  • [12] E. B. Gledzer,
    System of hydrodynamic type admitting two quadratic integrals of motion.
    Sov. Phys. Dokl. 18, 216-217.
  • [13] Z. Hani and L. Thomann, Asymptotic behavior of the nonlinear Schrödinger with harmonic trapping,
    Comm. Pure Appl. Math. To appear. Preprint, arXiv:1408.6213.
  • [14] S. Herr and J. Marzuola,
    On discrete rarefaction waves in a nonlinear Schrödinger equation toy model for weak turbulence.
    Preprint, arXiv:1307.1873 (2013).
  • [15] Sergey Nazarenko, Wave turbulence, Lecture Notes in Physics, vol. 825, Springer, Heidelberg, 2011. MR 3014432
  • [16] F. Nier, Bose-Einstein condensates in the lowest Landau level: Hamiltonian dynamics, Rev. Math. Phys. 19 (2007), no. 1, 101-130. MR 2293086 (2008h:82056), https://doi.org/10.1142/S0129055X07002900
  • [17] Koji Ohkitani and Michio Yamada, Temporal intermittency in the energy cascade process and local Lyapunov analysis in fully-developed model turbulence, Progr. Theoret. Phys. 81 (1989), no. 2, 329-341. MR 997440 (90j:76065), https://doi.org/10.1143/PTP.81.329
  • [18] V. Schweikhard, I. Coddington, P. Engels, V. P. Mogendorff, and E. A. Cornell,
    Rapidly rotating Bose-Einstein condensates in and near the Lowest Landau Level,
    Phys. Rev. Lett. 92 (2004), 040404.
  • [19] E. B. Sonin,
    Ground state and Tkachenko modes of a rapidly rotating Bose Einstein condensate in the lowest Landau level state,
    Phys. Rev. A 72 (2005), 021606(R).
  • [20] Kehe Zhu, Analysis on Fock spaces, Graduate Texts in Mathematics, vol. 263, Springer, New York, 2012. MR 2934601

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC (2010): 37Kxx

Retrieve articles in all journals with MSC (2010): 37Kxx


Additional Information

Pierre Germain
Affiliation: Courant Institute of Mathematical Sciences, 251 Mercer Street, New York, New York 10012-1185
Email: pgermain@cims.nyu.edu

Laurent Thomann
Affiliation: Institut Élie Cartan, Université de Lorraine, B.P. 70239, F-54506 Vandoeuvre-lès-Nancy Cedex, France
Email: laurent.thomann@univ-lorraine.fr

DOI: https://doi.org/10.1090/qam/1435
Keywords: Lowest Landau Level, shell model
Received by editor(s): September 29, 2015
Published electronically: June 17, 2016
Additional Notes: The first author was partially supported by NSF grant DMS-1101269, a start-up grant from the Courant Institute, and a Sloan fellowship.
The second author was partially supported by the grant “ANAÉ” ANR-13-BS01-0010-03.
Article copyright: © Copyright 2016 Brown University

American Mathematical Society