Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X



Towards monitoring critical microscopic parameters for electropermeabilization

Authors: H. Ammari, T. Widlak and W. Zhang
Journal: Quart. Appl. Math. 75 (2017), 1-17
MSC (2010): Primary 35B30, 35R30
DOI: https://doi.org/10.1090/qam/1449
Published electronically: July 27, 2016
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Electropermeabilization is a clinical technique in cancer treatment to locally stimulate the cell metabolism. It is based on electrical fields that change the properties of the cell membrane. With that, cancer treatment can reach the cell more easily. Electropermeabilization occurs only with accurate dosage of the electrical field. For applications, a monitoring for the amount of electropermeabilization is needed. It is a first step to image the macroscopic electrical field during the process. Nevertheless, this is not complete, because electropermeabilization depends on critical individual properties of the cells such as their curvature. From the macroscopic field, one cannot directly infer that microscopic state. In this article, we study effective parameters in a homogenization model as the next step to monitor the microscopic properties in clinical practice. We start from a physiological cell model for electropermeabilization and analyze its well-posedness. For a dynamical homogenization scheme, we prove convergence and then analyze the effective parameters, which can be found by macroscopic imaging methods. We demonstrate numerically the sensitivity of these effective parameters to critical microscopic parameters governing electropermeabilization. This opens the door to solving the inverse problem of reconstructing these parameters.

References [Enhancements On Off] (What's this?)

  • [1] Herbert Amann, Ordinary differential equations, De Gruyter Studies in Mathematics, vol. 13, Walter de Gruyter & Co., Berlin, 1990. An introduction to nonlinear analysis; Translated from the German by Gerhard Metzen. MR 1071170
  • [2] Micol Amar, Daniele Andreucci, Roberto Gianni, and Paolo Bisegna, Evolution and memory effects in the homogenization limit for electrical conduction in biological tissues, Math. Models Methods Appl. Sci. 14 (2004), no. 9, 1261–1295. MR 2086095, https://doi.org/10.1142/S0218202504003623
  • [3] Habib Ammari, Josselin Garnier, Laure Giovangigli, Wenjia Jing, and Jin-Keun Seo, Spectroscopic imaging of a dilute cell suspension, J. Math. Pures Appl. (9) 105 (2016), no. 5, 603–661 (English, with English and French summaries). MR 3479187, https://doi.org/10.1016/j.matpur.2015.11.009
  • [4] J. Dermol and D. Miklavčič,
    Predicting electroporation of cells in an inhomogeneous electric field based on mathematical modeling and experimental CHO-cell permeabilization to propidium iodide determination, Bioelectrochemistry 100 (2014), 52-61.
  • [5] A. Golberg and B. Rubinsky, Towards electroporation based treatment planning considering electric field induced muscle contractions, Technol. Cancer. Res. Treat. 11 (2012), no. 2, 189-201.
  • [6] A. Ivorra,
    Tissue electroporation as a bioelectric phenomenon: Basic concepts,
    in B. Rubinsky, editor, Irreversible Electroporation, Series in Biomedical Engineering, Springer, Berlin, Heidelberg, 2010, pp. 23-61.
  • [7] A. Ivorra, J. Villemejane, and L. M. Mir, Electrical modeling of the influence of medium conductivity on electroporation, Phys. Chem. Chem. Phys. 12 (2010), 10055-10064.
  • [8] Otared Kavian, Michael Leguèbe, Clair Poignard, and Lisl Weynans, “Classical” electropermeabilization modeling at the cell scale, J. Math. Biol. 68 (2014), no. 1-2, 235–265. MR 3147461, https://doi.org/10.1007/s00285-012-0629-3
  • [9] Yong Jung Kim, Ohin Kwon, Jin Keun Seo, and Eung Je Woo, Uniqueness and convergence of conductivity image reconstruction in magnetic resonance electrical impedance tomography, Inverse Problems 19 (2003), no. 5, 1213–1225. MR 2024696, https://doi.org/10.1088/0266-5611/19/5/312
  • [10] M. Kranjc, B. Markelc, F. Bajd, M. Čemažar, I. Serša, T. Blagus, and D. Miklavčič, In situ monitoring of electric field distribution in mouse tumor during electroporation, Radiology 274 (2015), no. 1, 115-123.
  • [11] D. Miklavčič, K. Beravs, D. Šemrov, M. Čemačar, F. Demsar, and G. Serša, The importance of electric field distribution for effective in vivo electroporation of tissues, Biophys. J. 74 (1998), 2152-5158.
  • [12] D. Miklavčič, M. Snoj, A. Zupanic, B. Kos, M. Čemažar, M. Kropivnik, M. Bracko, T. Pecnik, E. Gadzijev, and G. Serša, Towards treatment planning and treatment of deep-seated solid tumors by electrochemotherapy, Biomed. Eng. Online 9 (2010), no. 10.
  • [13] D. Miklavčič, D. Šemrov, H. Mekid, and L. M. Mir, A validated model of in vivo electric field distribution in tissues for electrochemotherapy and for DNA electrotransfer for gene therapy, Biochim. Biophys. Acta 1523 (2000), 73-83.
  • [14] J. C. Neu and W. Krassowska, Asymptotic model of electroporation, Phys. Rev. E 59 (1999), no. 3, 3471-3482.
  • [15] M. Pavlin, N. Pavšelj, and D. Miklavčič, Dependence of induced transmembrane potential on cell density, arrangement and cell position inside a cell system, IEEE Trans. Biomed. Eng. 49 (2002), no. 6, 605-612.
  • [16] M. Pavlin, T. Slivnik, and D. Miklavčič, Effective conductivitiy of cell suspensions, IEEE Trans. Biomed. Eng. 49 (2002), no. 1, 77-80.
  • [17] Per-Olof Persson and Gilbert Strang, A simple mesh generator in Matlab, SIAM Rev. 46 (2004), no. 2, 329–345. MR 2114458, https://doi.org/10.1137/S0036144503429121
  • [18] G. Pucihar, T. Kotnik, B. Valič, and D. Miklavčič, Numerical determination of transmembrane voltage induced on irregularly shaped cells, Ann. Biomed. Eng. 34 (2006), no. 4, 642-652.
  • [19] Jin Keun Seo and Eung Je Woo, Magnetic resonance electrical impedance tomography (MREIT), SIAM Rev. 53 (2011), no. 1, 40–68. MR 2785879, https://doi.org/10.1137/080742932
  • [20] K. Sugibayashi, M. Yoshida, K. Mori, T. Watanabe, and T. Hasegawa, Electric field analysis on the improved skin concentration of benzoate by electroporation, Int. J. Pharm. 219 (2001), 107-112.
  • [21] L. Towhidi, Kotnik. T., G. Pucihar, S. M. P. Firoozabadi, H. Mozdarani, and D. Miklavčič. Variability of the minimal transmembrane voltage resulting in detectable membrane electroporation, Electromagn. Biol. Med. 27 (2008), 372-385.

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC (2010): 35B30, 35R30

Retrieve articles in all journals with MSC (2010): 35B30, 35R30

Additional Information

H. Ammari
Affiliation: Department of Mathematics, ETH Zürich, Rämistrasse 101, CH-8092 Zürich, Switzerland
Email: habib.ammari@math.ethz.ch

T. Widlak
Affiliation: Department of Mathematics and Applications, École Normale Supérieure, 45, rue d’Ulm, 75230 Paris Cedex 05, France
Email: thomas.widlak@ens.fr

W. Zhang
Affiliation: Department of Mathematics and Applications, École Normale Supérieure, 45, rue d’Ulm, 75230 Paris Cedex 05, France
Email: wenlong.zhang@ens.fr

DOI: https://doi.org/10.1090/qam/1449
Keywords: Electropermeabilization, cell membrane, homogenization, sensitivity of effective parameters
Received by editor(s): March 24, 2016
Published electronically: July 27, 2016
Additional Notes: This work was supported by the ERC Advanced Grant Project MULTIMOD–267184.
Article copyright: © Copyright 2016 Brown University

Brown University The Quarterly of Applied Mathematics
is distributed by the American Mathematical Society
for Brown University
Online ISSN 1552-4485; Print ISSN 0033-569X
© 2017 Brown University
Comments: qam-query@ams.org
AMS Website