Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 
 

 

On the resolution of synchronous dipolar excitations via MEG measurements


Authors: George Dassios, Michael Doschoris and Konstantia Satrazemi
Journal: Quart. Appl. Math. 76 (2018), 39-45
MSC (2010): Primary 35Q61, 35R30, 35J25
DOI: https://doi.org/10.1090/qam/1476
Published electronically: June 28, 2017
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In the present work we provide a mathematical analysis that leads to an algorithm which decides whether a set of magnetoencephalographic data represents a single or a multiple simultaneous excitation of equivalent current dipoles. The very special case where this identification is not possible is analyzed in detail.


References [Enhancements On Off] (What's this?)

  • [1] George Dassios, Electric and magnetic activity of the brain in spherical and ellipsoidal geometry, Mathematical modeling in biomedical imaging. I, Lecture Notes in Math., vol. 1983, Springer, Berlin, 2009, pp. 133–202. MR 2581900, https://doi.org/10.1007/978-3-642-03444-2_4
  • [2] G. Dassios and A. S. Fokas, Electro-magneto-encephalography for a three-shell model: dipoles and beyond for the spherical geometry, Inverse Problems 25 (2009), no. 3, 035001, 20. MR 2480171, https://doi.org/10.1088/0266-5611/25/3/035001
  • [3] G. Dassios, M. Doschoris, and K. Satrazemi, Localizing Brain Activity from Multiple Distinct Sources via EEG, Journal of Applied Mathematics, vol.2014, Article ID232747. 2014.
  • [4] George Dassios and A. S. Fokas, The definite non-uniqueness results for deterministic EEG and MEG data, Inverse Problems 29 (2013), no. 6, 065012, 10. MR 3056085, https://doi.org/10.1088/0266-5611/29/6/065012
  • [5] R. Grech, T. Cassar, J. Muscat, K. P. Camilleri, S. G. Fabri, M. Zervakis, P. Xanthopoulos,
    V. Sakkalis, and B. Vanrumste, Review on solving the inverse problem in EEG source analysis, Journal of Neuro-Engineering and Rehabilitation, 5(25), 2008.
  • [6] P. L. Nunez and R. Srinivasan, Electric Fields of the Brain: The Neurophysics of EEG, 2nd Edition. Oxford University Press. 2006.
  • [7] R. Plonsey and D. B. Heppner, Considerations of quasi-stationary in electrophysiological systems, Buletin of Mathematical Biophysics, 29, 657-664, 1967.
  • [8] J. Sarvas, Basic mathematical and electromagnetic concepts of the biomagnetic inverse problem, Physics in Medicine and Biology, 32, 11-22, 1987.

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC (2010): 35Q61, 35R30, 35J25

Retrieve articles in all journals with MSC (2010): 35Q61, 35R30, 35J25


Additional Information

George Dassios
Affiliation: Department of Chemical Engineering, University of Patras, Caratheodory 1, University Campus, GR 265 04 Patras, Hellas and FORTH/ICE-HT, 26504 Patras, Hellas
Email: gdassios@chemeng.upatras.gr; gdassios@otenet.gr

Michael Doschoris
Affiliation: Department of Chemical Engineering, University of Patras, Caratheodory 1, University Campus, GR 265 04 Patras, Hellas and FORTH/ICE-HT, 26504 Patras, Hellas
Email: mdoscho@chemeng.upatras.gr

Konstantia Satrazemi
Affiliation: Department of Chemical Engineering, University of Patras, Caratheodory 1, University Campus, GR 265 04 Patras, Hellas
Email: satrazemik@chemeng.upatras.gr

DOI: https://doi.org/10.1090/qam/1476
Received by editor(s): February 22, 2017
Published electronically: June 28, 2017
Article copyright: © Copyright 2017 Brown University

American Mathematical Society