Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 
 

 

Initial-boundary value problem for Euler equations with incompatible data


Author: Dening Li
Journal: Quart. Appl. Math. 76 (2018), 47-64
MSC (2010): Primary 35L50, 35Q31; Secondary 35L67, 76N10
DOI: https://doi.org/10.1090/qam/1490
Published electronically: October 16, 2017
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We study the initial-boundary value problem for the general 3-D Euler equations with data which are incompatible in the classical sense, but are ``shock-compatible''. We show that such data are also shock-compatible of infinite order and the initial-boundary value problem has a piece-wise smooth solution containing a shock.


References [Enhancements On Off] (What's this?)

  • [1] S. Alinhac, Existence d'ondes de raréfaction pour des systèmes quasi-linéaires hyperboliques multidimensionnels, Comm. Partial Differential Equations 14 (1989), no. 2, 173-230 (French, with English summary). MR 976971, https://doi.org/10.1080/03605308908820595
  • [2] An Ton Bui and De Ning Li, Double shock fronts for hyperbolic systems of conservation laws in multidimensional space, Trans. Amer. Math. Soc. 316 (1989), no. 1, 233-250. MR 935939, https://doi.org/10.2307/2001282
  • [3] Shuxing Chen, Initial boundary value problems for quasilinear symmetric hyperbolic systems with characteristic boundary, Front. Math. China 2 (2007), no. 1, 87-102. Translated from Chinese Ann. Math. 3 (1982), no. 2, 222-232 [MR0663102]. MR 2289911, https://doi.org/10.1007/s11464-007-0006-5
  • [4] Shuxing Chen and Dening Li, Cauchy problem with general discontinuous initial data along a smooth curve for 2-d Euler system, J. Differential Equations 257 (2014), no. 6, 1939-1988. MR 3227287, https://doi.org/10.1016/j.jde.2014.05.027
  • [5] Jean-François Coulombel and Paolo Secchi, Nonlinear compressible vortex sheets in two space dimensions, Ann. Sci. Éc. Norm. Supér. (4) 41 (2008), no. 1, 85-139 (English, with English and French summaries). MR 2423311, https://doi.org/10.24033/asens.2064
  • [6] R. Courant and K. O. Friedrichs, Supersonic flow and shock waves, Springer-Verlag, New York-Heidelberg, 1976. Reprinting of the 1948 original; Applied Mathematical Sciences, Vol. 21. MR 0421279
  • [7] K. O. Friedrichs, Symmetric positive linear differential equations, Comm. Pure Appl. Math. 11 (1958), 333-418. MR 0100718, https://doi.org/10.1002/cpa.3160110306
  • [8] Mitsuru Ikawa, Mixed problem for a hyperbolic system of the first order, Publ. Res. Inst. Math. Sci. 7 (1971/72), 427-454. MR 0330785, https://doi.org/10.2977/prims/1195193549
  • [9] Heinz-Otto Kreiss, Initial boundary value problems for hyperbolic systems, Comm. Pure Appl. Math. 23 (1970), 277-298. MR 0437941, https://doi.org/10.1002/cpa.3160230304
  • [10] De Ning Li, Rarefaction and shock waves for multidimensional hyperbolic conservation laws, Comm. Partial Differential Equations 16 (1991), no. 2-3, 425-450. MR 1104106, https://doi.org/10.1080/03605309108820764
  • [11] Dening Li, Compatibility of jump Cauchy data for non-isentropic Euler equations, J. Math. Anal. Appl. 425 (2015), no. 1, 565-587. MR 3299680, https://doi.org/10.1016/j.jmaa.2014.12.053
  • [12] Ta Tsien Li and Wen Ci Yu, Boundary value problems for quasilinear hyperbolic systems, Duke University Mathematics Series, V, Duke University, Mathematics Department, Durham, NC, 1985. MR 823237
  • [13] Andrew Majda, The stability of multidimensional shock fronts, Mem. Amer. Math. Soc. 41 (1983), no. 275, iv+95. MR 683422, https://doi.org/10.1090/memo/0275
  • [14] Jeffrey B. Rauch and Frank J. Massey III, Differentiability of solutions to hyperbolic initial-boundary value problems, Trans. Amer. Math. Soc. 189 (1974), 303-318. MR 0340832, https://doi.org/10.2307/1996861
  • [15] J. Rauch, Boundary value problems with nonuniformly characteristic boundary, J. Math. Pures Appl. (9) 73 (1994), no. 4, 347-353. MR 1290491
  • [16] Joel Smoller, Shock waves and reaction-diffusion equations, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Science], vol. 258, Springer-Verlag, New York-Berlin, 1983. MR 688146
  • [17] David S. Tartakoff, Regularity of solutions to boundary value problems for first order systems, Indiana Univ. Math. J. 21 (1971/72), 1113-1129. MR 0440182, https://doi.org/10.1512/iumj.1972.21.21089

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC (2010): 35L50, 35Q31, 35L67, 76N10

Retrieve articles in all journals with MSC (2010): 35L50, 35Q31, 35L67, 76N10


Additional Information

Dening Li
Affiliation: Department of Mathematics, West Virginia University, Morgantown, West Virginia 26506-0001
Email: li@math.wvu.edu / dnli@hotmail.com

DOI: https://doi.org/10.1090/qam/1490
Keywords: Initial boundary value problem, Euler system, shock.
Received by editor(s): March 25, 2017
Published electronically: October 16, 2017
Article copyright: © Copyright 2017 Brown University

American Mathematical Society