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Abstract. We present, in the geometric setup given by the space–time bundle M
and its first jet–extension J1(M), an ideal constitutive characterization based on the

conservation of kinetic energy for a general mechanical system with a finite number of

degrees of freedom in contact/impact with a multiple unilateral constraint C comprising

a finite number of regular constraints of codimension 1.

We prove that the geometric structures associated to the elements of C determine a

natural criterion to choose the simplest non-trivial constitutive characterization among

the various possibilities preserving the kinetic energy in multiple impacts.

We put this specific choice at the core of an algorithm that determines the right–

velocity of the system once the massive properties of the system, the elements of the

multiple constraint and the left–velocity of the system are known, in cases of both single

and multiple contact/impact.

We show the application of the algorithm in three significant examples: the Newton

Cradle, the simultaneous impact of a disk with two disks at rest and in contact, the

impact of a disk with a disk at rest and in contact with two other disks.

Introduction. Classical Contact/Impact Mechanics of systems subject to unilateral

constraints has in the last few decades enjoyed renewed interest due to the wide variety of

applications to physical and engineering problems such as the study of granular materials,

kinematic chains and robotics.

The great breadth of possible contact/impact (from now on C/I) situations can be

subdivided according to various criteria. One criterion is the nature of the massive parts
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comprising the mechanical system (single or multi–body); another criterion is the type of

the constraints acting on the massive parts (ideal or non–ideal, with or without friction,

positional and/or kinetics); a third criterion is the nature of the C/I between massive

parts and constraints (single or multi–point).

The analysis of the system can be tackled by looking for a solution of the motion as a

whole, or by splitting the motion into periods of differentiable motion separated by the

instants of impulsive motion (the so-called “event driven” approach).

The main different methodologies that can be chosen to base the analysis of the C/I

laws governing the interaction between different massive parts of the system or between

massive parts and constraints include algebraic laws, local deformation laws and full

deformation laws. Algebraic laws describe the C/I interaction by algebraic equations

that relate pre–C/I and post–C/I quantities, possibly without the analysis of mechanical

quantities such as forces and deformations in the period of C/I. Local deformation laws

analyze and model deformation and slip only in a restricted region, usually referred to as

a “contact” region, close to the points where the contacts between massive parts and/or

constraints happen, and assume that the motion of the bulk of the massive parts of the

system is governed by rigid–body Mechanics models and equations during the C/I. Full

deformation laws establish that all the massive parts of the system are subject to the

Continuum Mechanics models and equations.

Obviously, for each of these possible methodologies, extended bibliographies and lists

of references could be exhibited. We will go back to the bibliography at the end of this

introduction.

This paper concerns the motion of a general (single or multi–body) system subject to

ideal frictionless positional constraints and involved in a general (single or multi–point)

impact. We use the event–driven approach, using the model given by algebraic impact

laws, in a frame–independent context.

We present a frame–independent kinetic–energy–preserving constitutive characteriza-

tion of single or multiple C/I of general systems with a finite number of degrees of freedom

with multiple positional unilateral constraints.

The great importance of frame independence for any result pertaining to velocity and

kinetic energy in Classical Mechanics should be universally known and understood. We

refer to the Appendix for a discussion about the importance of a frame–independent and

coordinate–free description of C/I Mechanics. Since the pre–C/I and post–C/I quanti-

ties taken into account by the algebraic impact laws will simply be velocities and kinetic

energy, due to the obvious fact that velocity and kinetic energy are frame–dependent

quantities, a frame–independent context is mandatory to give physical meaning to the

impact laws. Let us promptly recall that naive differential geometric setups such as the

configuration space Q, the finite dimensional Riemannian manifold whose points repre-

sent the possible configurations of the mechanical system, with its tangent space T (Q),

or the trivial product bundles R×Q and R×T (Q), although ensuring a coordinate–free

context, do not provide a frame–independent context. To achieve frame independence

(and of course a coordinate–free setup), we will work in the differential geometric environ-

ment given by the so-called space–time configuration bundle M and its first jet–extension
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J1(M), endowed with a vertical positive definite metric: this will be more fitting for in-

troducing the concept of frame of reference and the related concepts of relative velocity

and relative kinetic energy.

The general properties of the constitutive characterizations preserving the kinetic en-

ergy for an impulsive positional constraint were described in [1], also for a constraint

of codimension greater than 1. In particular, it was shown that, for impacts with con-

straints of codimension greater than 1, requiring just the preservation of kinetic energy in

the impact is not sufficient to uniquely determine the constitutive characterization, but a

specific choice relying on geometric arguments and a maximality principle was suggested.

Nevertheless, additional information about the nature of the constraint, for instance if

the constraint is the intersection of two or more unilateral constraints of codimension 1,

could (possibly) suggest a different choice.

In this paper we investigate this possibility. With this aim, we extend some concepts

of the geometric description of a single unilateral constraint S, viewed as the fibred sub-

bundle of the space–time bundle M, to the case of a finite set C of unilateral constraints

of codimension 1. In particular we generalize the concept of a set of rest frames of a con-

straint to the case of a multiple constraint C. This generalization allows one to obtain a

meaningful concept of orthogonal components of velocity with respect to each constraint

or subset of constraints of C, introducing then new geometric tools that suggest how

to select a meaningful frame–independent requirement of preservation of kinetic energy

in case of multiple impact. This preservation condition, when employed in a suitable

algorithm selecting those elements of C actually acting on the system in the analyzed im-

pact, determines a constitutive characterization of C that turns out in general different

from that obtained by considering C as a single constraint of codimension greater than 1.

Furthermore, it better describes the impulsive behavior of the system. The applicability

and the usefulness of the algorithm implementing this constitutive characterization, and

a critical comparison between the two characterizations, are exhibited and discussed in

some examples.

Although the results presented in the paper are grounded on the very basic approach

given by an algebraic law involving only kinetic energy (then without local analysis of

forces or other mechanical quantities pertaining to the contact), the strengthening given

by the frame invariance requirement turns them out powerful enough to apply to non-

trivial multiple ideal impacts of multi-body systems, such as the opening break shots in

billiard games. Moreover, it will be clear that the results presented in the paper constitute

the first step in order to analyze with the same methods more complicated situations,

such as non–ideal (frictionless or not) multiple impacts, possibly with positional and

kinetic multiple constrains, also in the presence of anisotropy.

In Section 1 we present the notation for and give a summary of the bundle founda-

tions suitable for geometrizing the frame–independent approach to Impulsive Mechanics.

Starting with the notion of space–time configuration bundle M, we recall the affine and

vector structures of its first jet-extension J1(M) and its vertical bundle V (M) respec-

tively, together with the concepts of vertical metric and frame of reference. Moreover we

describe how the presence of a unilateral constraint S, viewed as a fibred subbundle of M,
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enriches the geometric setup with the subbundles J1(S) ⊂ J1(M) and V (S) ⊂ V (M),

with the set of rest frames of the constraint and with the projection operators determined

by the vertical metric. We end the section by recalling the ideal constitutive characteri-

zation of a single unilateral constraint, possibly of codimension greater than 1, based on

the requirement of conservation of kinetic energy for all the rest frames of the constraint.

In Section 2, we simply generalize the main geometric concepts recalled in Section 1

to the case of a finite set C = {Sξ ⊂ M, ξ = 1, . . . , r} of unilateral constraints acting

on the system. In order to ensure a clear physical meaning for C, we also require three

conditions about codimension, regularity and independence of the elements of C.

In Section 3, after some general remarks and premises, we propose a kinetic energy

preserving constitutive characterization of the multiple constraint C: to do so, we present

a detailed algorithm that describes how to calculate a right–velocity pR of the system

for a given left–velocity pL. In accordance with our premises, the algorithm is devised in

such a way that it takes into account the nature of the contact (absence of contact, single

or multiple contacts with or without impact), it gives the same result as the usual ideal

constitutive characterization for a single C/I and it handles the elements of C involved

in case of multiple contact without distinguishing between them.

In Section 4, we present three meaningful examples, mainly inspired by simplified

billiard strokes, of the behavior of the algorithm of Section 3 in situations involving mul-

tiple C/I: a simplified version of the classical example of the Newton Cradle; a simplified

splitting stroke of the cue ball on two target balls; a simplified break shot of a cue ball on

three target balls. Moreover, with the limitations imposed by the computational com-

plexity, we compare the results of the algorithm with the results of the characterization

presented in [1] for constraints of codimension greater than 1.

In Section 5, we conclude the paper with final remarks about the termination analysis

of the algorithm and mention some possible future developments and generalizations

of the techniques presented in the paper: for instance, the presence of permanent or

impulsive kinetic constraints, the non-ideality of the C/I phenomenon and the possible

anisotropy of C.

In the Appendix we recall some basic notions about the geometric setup for a frame–

independent approach to Classical Mechanics of systems with a finite number of degrees

of freedom, briefly underlining the intrinsic limitations of the usual frame–dependent

approach based on the geometry of the configuration space Q.

The list of references is based on a minimality criterion: to make the paper self–

consistent. Different choices, even if restricted to the works pertaining to multiple im-

pacts, would oblige us to draw up a wide list of citations that, although important for a

better comprehension of the various problems, methods and techniques of multi–impact

Mechanics, are not focused on the specific approach presented in the paper and would

then draw away the attention of the reader from the peculiarities (especially about frame

independence) of this paper. Anyway, for large but not recent or exhaustive lists of

general references, see for example the books [2–5].

1. Preliminaries. In this section we briefly present, also in order to fix notation, the

bundle environment characterizing Geometric Impulsive Mechanics. For a very detailed
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treatise about the geometry of jet bundles, see [6,7]. For a concise overview of the use of

jet-bundle theory in a frame–independent approach to Classical Mechanics, see [1,8–11].

1.1. Geometry, kinematics and general impulsive aspects of free mechanical systems.

The usual geometric setup suitable to study frame–independent and time dependent

Classical Mechanics of a system with a finite number n of degrees of freedom consists of:

• a bundle πt : M → E, being M an (n + 1)–dimensional differentiable manifold

and E the affine time line. The elements of M are called space–time configu-

rations of the system. We require, as a regularity condition, that all the fibres

of M are diffeomorphic to the same manifold Q, usually known as the config-

uration space of the system. The manifold Q takes intrinsically into account

all the ideal positional bilateral constraints acting on the system. The bundle

M is then non-canonically diffeomorphic to the product bundle R × Q and it

can be described by fibred coordinates (t, xi), i = 1, . . . , n, where t is the time

coordinate expressing the absolute time axiom.

• The first jet–extension π : J1(M) → M of the bundle M, representing the space

of absolute velocities of the system. It is a (2n+1)–dimensional affine subbundle

of the tangent bundle T (M) of M. The bundle J1(M) can be referred to as

admissible jet–coordinates (t, xi, ẋi), i = 1, . . . , n. Using local coordinates, the

elements of J1(M) have the form p = ∂
∂t + ẋi ∂

∂xi (the sum over repeated indexes

is implicitly understood).

• The vertical vector bundle π : V (M) → M of the vectors of T (M) that are

vertical with respect to πt, that is, that are tangent to the fibres of M. The

bundle V (M) is the vector bundle modelling the affine bundle J1(M). The

bundle V (M) too can be referred to as admissible local coordinates (t, xi, ẋi) or,

as usual, (t, xi, ui). Then, using local coordinates, the elements of V (M) have

the form �U = ui ∂
∂xi .

• A positive definite scalar product Φ : V (M) ×M V (M) → R, acting on the

fibres of V (M). It is usually called the vertical metric, it takes intrinsically into

account the mass properties of the system and it expresses in a wide sense the

absolute space axiom (see [8] for a more detailed analysis of this aspect). Using

local coordinates, the vertical metric is expressed by the positive definite matrix

gij = Φ( ∂
∂xi ,

∂
∂xj ).

• The class HM of the frames of reference for the system (without any assumption

of rigidity), that is, the set of global sections hM : M → J1(M). Using local

coordinates, the elements of J1(M) have the form hM = ∂
∂t + hi(t, xj) ∂

∂xi .

Some remarks about the geometric framework described above are in order:

1) every section hM ∈ HM determines a fibred diffeomorphism ψh : M → R × Q
identifying the elements lying on the same integral line of hM. Vice versa every

global fibred diffeomorphism ψ : M → R × Q determines a frame of reference

hM = (ψ−1)∗(
∂
∂t ) ∈ HM.

2) For every frame hM ∈ HM and absolute velocity p ∈ J1(M), the vertical vec-

tor �ΔhM(p) = p − hM(π(p)) represents the relative velocity of p with respect
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to hM. Moreover, the function KhM : J1(M) → R such that KhM(p) =
1
2 Φ (�ΔhM(p), �ΔhM(p)) represents the kinetic energy function relative to the

frame hM.

3) The vertical bundle V (M) represents the space of possible impulses acting on

the system (see [1]). In fact, the relation between the space J1(M) of absolute

velocities and the space V (M) of impulses is made clear by the very nature of

impulsive problems: given an input velocity pL (the so-called “left–velocity”) of

the system and an impulse �I, the sum

pR = pL + �I (1)

must be an output velocity (“right–velocity”) of the system. A similar situation

is perfectly framed in the relations between affine spaces and modelling vector

spaces.

4) Since forces and accelerations are not analyzed in the paper, the introduction of

the second jet–extension π : J2(M) → J1(M) is not necessary.

The description of an impulsive dynamic problem in this geometric context is very

simple: it consists of determining an element pR ∈ J1(M), the right–velocity, once an

element pL ∈ J1(M), the left–velocity, is known. Impulsive dynamics of free (in the

sense of not subject to the action of unilateral constraints) systems is then assigned once

an active impulse, that is, a global section �I : J1(M) → V (M), is assigned. Equation

(1), viewed as the evolution equation for impulsive systems, determines the behavior of

the system.

1.2. Additional positional constraints. The geometric description of a mechanical sys-

tem subject to unilateral constraints requires additional structures. An additional po-

sitional constraint acting on the system is a globally E–fibred subbundle i : S → M
of M. Once again we require that all the fibres of S with respect to the restriction of

the fibre map πt are diffeomorphic to the same submanifold of the configuration space

Q. The subbundle S can be described by fibred coordinates (t, qα), α = 1, . . . , s < n.

The immersion i : S → M can be described in a parametric way xi = xi(t, qα), i =

1, . . . , n;α = 1, . . . , s or in a cartesian way Fρ(t, x
i) = 0, ρ = 1, . . . , n− s.

We say that a space–time configuration m ∈ M of the system is a contact position

with S (briefly, the system is in contact with S) if m ∈ i(S) (briefly, m ∈ S).

We are not interested in S as additional bilateral constraint, since we suppose that

all bilateral constraints are intrinsically taken into account in the construction of the

space–time bundle M. We need to introduce some geometric structures determined by

the immersion i : S → M in order to analyze S viewed as unilateral constraint.

• The (restriction of the) bundle πt : S → E determines its own first jet–extension

π : J1(S) → S, its corresponding vertical bundle π : V (S) → S and the natural

immersions i∗ : J1(S) → J1(M) and i∗ : V (S) → V (M). The vertical metric Φ

of V (M) can be restricted to a vertical metric ϕ : V (S) ×S V (S) → R.

• The immersion i : S → M also determines the pullback bundles i∗(J1(M)) → S
of the possible velocities of the system when the system is in contact with S
and i∗(V (M)) → S of the possible impulses acting on the system when the

system is in contact with S. The pullback bundles i∗(J1(M)) and i∗(V (M))
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can be described by admissible local coordinates (t, qα, ẋi) and (t, qα, ui), α =

1, . . . , s; i = 1, . . . , n respectively.

• Together with the set HS of global sections hS : S → J1(S), the constraint S
selects the class H�J1(S)

⊂ HM of those frames of reference of M tangent to S,

that is, whose restriction h�S : S → J1(M) has image in i∗(J1(S)). The class

H�J1(S)
represents the set of all those frames of reference of M for which the

constraint S could be considered at rest.

The whole geometric construction can be summarized by the following diagram:

J1(S)

π

��

i∗ �� i∗(J1(M))

π

��

i∗ �� J1(M)

π

��
S S i �� M

hM

��

V (S)

π�����

�������

i∗ �� i∗(V (M))

π�����

��������

i∗ �� V (M)
��

�ΔhM

��

π�����

�������

The part of this geometric construction singled out by the subdiagram:

J1(S)

π

��

i∗ �� i∗(J1(M))

π

��
S

h�S

��

S

hM

��

V (S)

π�����

�������

i∗ �� i∗(V (M))

π�����

��������

		

�ΔhM





is fundamental to describe in a frame–independent and event-driven way the impulsive

behavior of the mechanical system. In fact

1) since all the bundles have the same base space S, all their elements have space–

time configurations belonging to S, and then with the system in contact with

S.

2) The elements of J1(S) are absolute velocities of the system tangent to S, while

the elements of i∗(J1(M)) are absolute velocities of the system when the system

is in contact with S but not necessarily velocities tangent to S. The elements

of i∗(J1(M)) are then all the possible “left” and “right” velocities of the system

before and after the contact.
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3) The elements of i∗(V (V)) are both the relative velocities of the system in contact

with S once a frame of reference hM (not necessarily in H�J1(S)
) is assigned and

the absolute impulses possibly acting on the system in contact with S (in the

sense expressed by equation (1)).

1.3. Orthogonal component of an absolute velocity. Thanks to the vertical metric Φ,

the vector bundle i∗(V (M)) can be split (with a mild abuse of notation) into the direct

sum

i∗(V (M)) = V (S) ⊕ (V (S))⊥ . (2)

For every absolute velocity p ∈ i∗(J1(M)) and every frame of reference hM ∈ HM
the relative velocity �ΔhM(p) ∈ i∗(V (M)) can then be split using (2) into the sum
�ΔhM(p) = �v

‖
S (p) + �v⊥S (p) of the tangential and orthogonal components of �ΔhM(p)

with respect to S. In the general case, both these components depend on the frame hM.

However it is known (see [1]) that the orthogonal component �v⊥S (p) does not change when

the frames are chosen in the class H�J1(S)
for which the constraint could be considered

at rest, while the tangential part �v
‖

S (p) remains dependent on the frame even when the

choice is restricted to H�J1(S)
. This (partially) invariant orthogonal component is then

the sole vertical vector giving a frame invariant meaning to the concept of orthogonal

component �v⊥S (p) of the absolute velocity p with respect to the constraint S.

Recalling that both J1(S) and i∗(J1(M)) have an affine nature, the affine bundle

i∗(J1(M)) can be split (once again with a mild abuse of notation) into the sum

i∗(J1(M)) = J1(S) ⊕ (V (S))⊥ . (3)

However in this case the meaning of the symbol ⊕ is related to the action of the modelling

bundle i∗(V (M)) on the affine bundle i∗(J1(M)). The splitting (3) determines the

projection operators

PS : i∗(J1(M)) → J1(S) ; P⊥
S : i∗(J1(M)) → (V (S))⊥ . (4)

The vertical vector P⊥
S (p) ∈ (V (S))⊥ associated to a velocity p ∈ i∗(J1(M)) is (see

[1]) the orthogonal component �v⊥S (p) of the absolute velocity p with respect to the

constraint S.

Let us stress however that, as a consequence of the properties of the splittings (2),

(3), any statement regarding the constraint S and involving “the orthogonal or tangent

component of the velocity with respect to S”:

i) can have an invariant nature only if we restrict our attention to the frames of

reference of the subclass H�J1(S)
of the possible rest frames of S;

ii) cannot in any way have an invariant nature if the tangent component �v
‖

S (p) is

involved.

If the unilateral constraint S is of codimension 1, the bundle (V (S))⊥ has fibres of

dimension 1 and we can choose a (possibly unit) vector �u⊥
S such that (V (S))⊥ is generated

by �u⊥
S , that is, (V (S))⊥ = Lin(�u⊥

S ). If so, every orthogonal velocity �v⊥S (p) is a multiple

of �u⊥
S .
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It is a straightforward matter to show that, if F (t, xi) = 0 is the local cartesian

representation of S in fibred coordinates, the vertical vector

�u⊥
S = gij

∂F

∂xj

∂

∂xi
, (5)

where gij is the inverse of the matrix gij giving the local representation of the vertical

metric Φ, is a possible choice for the generator of (V (S))⊥.

1.4. Incoming or outgoing nature of an absolute velocity. Determining the “incoming”

(in the sense of “causing a collision”) or “outgoing” (in the sense of “result of a collision”)

nature of a velocity p ∈ i∗(J1(M)) is crucial to establish if the system in the contact

position π(p) ∈ S does or does not have an impact with the constraint. However, this

can depend on the nature of the constraint S, as illustrated by the following examples.

Example 1.1. A massive point particle of mass M moves in a three–dimensional

euclidean halfspace. The space–time M can be described by global euclidean coordinates

(t, x, y, z), the vertical metric is gij = diag(M,M,M) and the constraint S can be

described by the immersion (t, x, y) ↪→ (t, x, y, 0) or by the condition z = 0. Given an

absolute velocity p ∈ i∗(J1(M)), we have:

p =
∂

∂t
+ ẋ

∂

∂x
+ ẏ

∂

∂y
+ ż

∂

∂z
,

and ⎧⎪⎨
⎪⎩

PS(p) =
∂

∂t
+ ẋ

∂

∂x
+ ẏ

∂

∂y
,

P⊥
S (p) = �v⊥S (p) = ż

∂

∂z
.

The “incoming” or “outgoing” nature of p with respect to S depends on what halfspace

z ≤ 0 or z ≥ 0 is admissible for the material point. For instance, if z ≥ 0 is the admissible

halfspace, choosing �u⊥
S =

∂

∂z
, the incoming nature of p is equivalent to the condition

Φ
(
�v⊥S (p), �u⊥

S
)

= Φ

(
ż
∂

∂z
,
∂

∂z

)
= M ż < 0 that ensures the presence of an impact.

Example 1.2. A massive point particle moves in a three–dimensional euclidean space

crossed by a straight line. The space–time M can be described by global euclidean

coordinates (t, x, y, z) and the constraint S can be described by the immersion (t, x) ↪→
(t, x, 0, 0) or by the conditions y = z = 0. Given an absolute velocity p ∈ i∗(J1(M)), we

have:

p =
∂

∂t
+ ẋ

∂

∂x
+ ẏ

∂

∂y
+ ż

∂

∂z
,

and ⎧⎪⎨
⎪⎩

PS(p) =
∂

∂t
+ ẋ

∂

∂x
,

P⊥
S (p) = �v⊥S (p) = ẏ

∂

∂y
+ ż

∂

∂z
.

Due to the codimension of S, in this case it is not clear how to determine the “incoming”

or “outgoing” nature of p with respect to S, since all the velocities p ∈ i∗(J1(M)),p /∈
J1(S) can be either velocities of the point before the impact with S or velocities of the

point after the impact with S.
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The examples above illustrate how the codimension of the unilateral constraint plays

an important role in the analysis of the impulsive phenomenon, even in order to deter-

mine if an impact happens. The following example points out the difference between a

constraint that is intrinsically of codimension greater than 1 (such as the constraint of

Example 1.2: a straight line in the three–dimensional space) and a constraint that is

actually of codimension greater than 1 but it is obtained by the simultaneous action of

two or more constraints of codimension 1.

Example 1.3. A massive point particle moves in a three–dimensional euclidean part

of space delimited by two non–parallel planes. The space–time M is once again de-

scribed by global euclidean coordinates (t, x, y, z). Let the constraint S1 be described

by the immersion (t, x, y) ↪→ (t, x, y, 2y), equivalent to the condition z − 2y = 0, and

the constraint S2 be described by the immersion (t, x, z) ↪→ (t, x, 2z, z), equivalent to

y − 2z = 0. We consider the point in contact with the intersection S1 ∩ S2, that is, a

constraint of codimension 2. Once again, given an absolute velocity p ∈ i∗(J1(M)) we

have:

p =
∂

∂t
+ ẋ

∂

∂x
+ ẏ

∂

∂y
+ ż

∂

∂z
,

and we have ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

PS1∩S2
(p) =

∂

∂t
+ ẋ

∂

∂x
,

�v⊥S1∩S2
(p) = ẏ

∂

∂y
+ ż

∂

∂z
,

that are the same projection and orthogonal velocity of Example 1.2. Nevertheless, the

situations described by Examples 1.2 and 1.3 are different, for at least three main reasons.

The first regards the part of M that is admissible for the material point: the whole M
for the Example 1.2, only one of the four parts in which M is divided by S1 and S2 for

the Example 1.3. The second is that in Example 1.3 we have three orthogonal velocities:

�v⊥S1
(p) =

2

5
(2ẏ − ż)

∂

∂y
− 1

5
(2ẏ − ż)

∂

∂z
,

�v⊥S2
(p) =

1

5
(ẏ − 2ż)

∂

∂y
− 2

5
(ẏ − 2ż)

∂

∂z
,

and �v⊥S1∩S2
(p) instead of a single orthogonal velocity �v⊥S (p) of Example 1.2. Note that a

straightforward calculation shows that, in the general case, �v⊥S1∩S2
(p) 	= �v⊥S1

(p)+�v⊥S2
(p).

The third is that in cases such as Example 1.3 we can check if the left–velocity pL is

an incoming velocity for S1 and/or S2, calculating the scalar products Φ
(
�v⊥S1

(pL), �u⊥
S1

)
and Φ

(
�v⊥S2

(pL), �u⊥
S2

)
.

The following result facilitates the check of the “incoming” or “outgoing” nature of a

velocity p with respect to a unilateral constraint of codimension 1.

Lemma 1.1. Let S be a constraint of codimension 1, let FS(t, xi) = 0 be the cartesian

representation of S and p ∈ i∗(J1(M)). Then, for a suitable choice of �u⊥
S , we have:

Φ
(
�v⊥S (p), �u⊥

S
)

= p(FS) .
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Proof. Due to the splitting (3), we have:

p(FS) = PS(p)(FS) + �v⊥S (p)(FS) = �v⊥S (p)(FS)

because PS(p)(FS) = 0 since PS(p) is tangent to S by construction. Then using local

coordinates and recalling (5), with obvious notation we have:

Φ
(
�v⊥S (p), �u⊥

S
)

= Φ

(
(�v⊥S )h

∂

∂xh
, gij

∂FS
∂xj

∂

∂xi

)
= ghig

ij(�v⊥S )h
∂FS
∂xj

= (�v⊥S )h
∂FS
∂xh

= �v⊥S (p)(FS) = p(FS).

�
Later on, given S of codimension 1, we preferably but not compulsorily choose the

generator �u⊥
S and the cartesian representation FS(t, xi) = 0 such that a velocity p is

incoming for S if Φ
(
�v⊥S (p), �u⊥

S
)

= p(FS) < 0, and p is outgoing for S if Φ
(
�v⊥S (p), �u⊥

S
)

=

p(FS) ≥ 0.

1.5. Impulsive constitutive characterization of a constraint. The impulsive evolution

problem for a system subject to a unilateral constraint, although apparently very similar

to that of a free system, is conceptually very different. Both the problems are based

on equation (1) and we saw that for free systems the evolution is known once an active

impulse is a priori assigned. In the constrained case instead, the reactive impulse due to

the constraint is in general unknown. Only the assignment of an impulsive constitutive

characterization of the constraint fit to uniquely determine the reactive impulse makes

possible the knowledge of the evolution of the system.

A constitutive characterization of an impulsive constraint is then a map

�I : i∗(J1(M)) → i∗(V (M))

pL � �I(pL)
(6)

assigning to each possible left–velocity pL ∈ i∗(J1(M)) the reactive impulse �I(pL) ∈
i∗(V (M)). The right–velocity pR ∈ i∗(J1(M)) giving the evolution of the system is

then uniquely determined by equation (1) written as pR = pL + �I(pL).

In the case of constraint S of codimension 1, the requirement of conservation of kinetic

energy of the colliding system for every frame of reference in the class H�J1(S)
(that,

similarly to the case of the orthogonal component �v⊥S (p) of an absolute velocity p, is

the only class for which the conservation of kinetic energy has a clear meaning) uniquely

determines (see [1]) the ideal constitutive characterization (6) of the constraint in the

form:

�Iideal : i∗(J1(M)) → i∗(V (M))

pL � − 2�v⊥S (pL).
(7)

More precisely, since codim(S) = 1, a preliminary check to verify if the left–velocity

pL is of incoming nature is mandatory. This can be done by adding the condition

Φ
(
�v⊥S (pL), �u⊥

S
)
< 0 for a suitable choice of the generator �u⊥

S of (V (S))⊥. Then the

kinetic–energy–preserving ideal constitutive characterization for constraints S with
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codim(S) = 1 is the rule:

�Iideal(pL) =

⎧⎨
⎩

− 2�v⊥S (pL) if Φ
(
�v⊥S (pL), �u⊥

S
)
< 0;

0 if Φ
(
�v⊥S (pL), �u⊥

S
)
≥ 0.

(8)

In case of constraints of codimension greater than 1, such as the constraint of Example

1.2, the conservation of kinetic energy does not uniquely determine the ideal constitutive

characterization (see once again [1]). Nevertheless, in the absence of additional informa-

tion about the constraint, and recalling that in the general case there is no need to check

the incoming nature of pL, the constitutive characterization (7) is still a possible choice

that, because of geometric reasons and maximality principles, turns out to be the most

natural among those preserving kinetic energy.

However, when the constraint of codimension greater than 1 is given by intersection

of two (or more) constraints of codimension 1, such as the constraint of Example 1.3, the

situation becomes different. In fact in this case the geometric structure of the system is

enriched by different orthogonal velocities �v⊥S1
(p), �v⊥S2

(p) and �v⊥S1∩S2
(p), and moreover

by the fact that in general �v⊥S1∩S2
(p) 	= �v⊥S1

(p) + �v⊥S2
(p). These velocities will play

a crucial role in our choice of ideal impulsive constitutive characterization of multiple

constraints.

2. Geometry and kinematics of systems with multiple contacts. In this sec-

tion we analyze in detail the geometric structure of a constraint C of codimension greater

than 1 given by intersection of constraints of codimension 1 (for brevity, a multiple con-

straint C). Moreover, we define the notions of incoming and outgoing velocity for C and

we introduce the several different orthogonal velocities determined by C.

2.1. Geometry of systems with multiple contacts. The geometric setup described in the

previous section can be generalized to mechanical systems subject to (possible) multiple

constraints. A multiple constraint is a set C = {Sξ ⊂ M, ξ = 1, . . . , r} of unilateral

constraints acting on the system, where r is finite and πt : M → E is the usual space–time

manifold of the system.

For every constraint Sξ we can introduce the geometric structures described in Subsec-

tions 1.2 and 1.3: the jet bundle J1(Sξ), the vertical bundle V (Sξ), the pullback bundles

i∗ξ(J1(M)) and i∗ξ(V (M)), the class of frames H�J1(Sξ)
, the splittings V (Sξ) ⊕ (V (Sξ))

⊥

and J1(Sξ) ⊕ (V (Sξ))
⊥ of i∗ξ(V (M)) and i∗ξ(J1(M)) and the projectors PSξ

and P⊥
Sξ

.

Although the following analysis can be performed in very general cases, we require

three conditions on the elements of C in order to avoid very singular situations with bare

physical meaning (such as the one of Example 1.2 or even worse).

Condition 1 (Dimensional). codim(Sξ) = 1 ∀ ξ = 1, . . . , r.

Of course, the system can be subject to multiple contacts only if there exists at least

one intersection Sξ1 ∩ . . . ∩ Sξk 	= ∅ for some k–uple of indexes {ξ1, . . . , ξk, 2 ≤ k ≤ r}.
The possible simultaneous action of more than one constraint on the system is then

pointed out by the map

Cont : M → Parts ({1, . . . , r})
m � {ξ s.t.m ∈ Sξ} .

(9)
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If Cont(m) = ∅, the system in the space–time configuration m is not in contact with

any constraint, while if Cont(m) = {ξ1, . . . , ξk, k ≤ r} 	= ∅ the system in the space–time

configuration m is simultaneously in contact with the constraints Sξ1 , . . . ,Sξk .

Due to the generality of the approach, the intersection Sξ1 ∩ . . .∩Sξk , even when not

empty, might not be a subbundle of M (or even a regular manifold at all): constraints

Sξ1 , . . . ,Sξk with an effective time dependence easily provide examples of non regular

intersections. Then we require the following condition:

Condition 2 (Regularity). If Sξ1 ∩ . . .∩ Sξk 	= ∅, then it is (a regular manifold and)

a subbundle of M.

If Sξ1 ∩ . . .∩Sξk 	= ∅, we can consider the class H�ξ1...ξk
of the frames of HM that are

simultaneously tangent to all the constraints Sξ1 , . . . ,Sξk . Of course, if h ∈ H�ξ1...ξk
, then

h ∈ H�ξl for all l = 1, . . . , k. Moreover Condition 2 implies that dim(Sξ1 ∩ . . .∩Sξk) ≥ 1

and then the set H�ξ1...ξk
is non-empty.

Recalling that, due to Condition 1, we can introduce the generators �u⊥
ξ for each vertical

subspace (V (Sξ))
⊥, we finally require the following condition:

Condition 3 (Independence). If m is a multiple contact configuration with Cont(m)

= {ξ1, . . . , ξk}, then the vectors �u⊥
ξ1

(m), . . . , �u⊥
ξk

(m) are linearly independent.

Note that, due to (5), Condition 3 implies that for every m ∈ Sξ1 ∩ . . .∩Sξk , we have

Codim(Sξ1 ∩ . . . ∩ Sξk) = k.

2.2. Kinematics of systems with multiple contacts. For every p such that π(p) ∈
Sξ1 ∩ . . . ∩ Sξk we have in particular that π(p) ∈ Sξl for all l = 1, . . . , k. By using the

projectors P⊥
Sξ

, we can introduce the k orthogonal velocities �v⊥ξl(p) ∈ (V (Sξl))
⊥ for all

l = 1, . . . , k.

Definition 2.1. Let C = {Sξ ⊂ M, ξ = 1, . . . , r} be a multiple constraint satisfying

Conditions 1, 2, 3 and let p ∈ i∗(J1(S)) such that Cont(π(p)) = {ξ1, . . . , ξk} (or, that

is the same, π(p) ∈ Sξ1 ∩ . . . ∩ Sξk). Then:

• p is an incoming velocity for C if it is an incoming velocity for at least one

Sξl ∈ {Sξ1 , . . . ,Sξk} ⇔ ∃ l ∈ {1, . . . , k} s.t. Φ
(
�v⊥Sξl

(p), �u⊥
Sξl

)
< 0;

• p is an outgoing velocity for C if it is an outgoing velocity for all the elements

Sξ1 , . . . ,Sξk ⇔ Φ
(
�v⊥Sξl

(p), �u⊥
Sξl

)
≥ 0 ∀ l = 1, . . . , k.

Of course the system in the contact position π(p) is subject to an impact if and only

if p is an incoming velocity for C.

Note moreover that, if p is such that π(p) ∈ Sξ1 ∩ . . . ∩ Sξk , we can also introduce

the orthogonal component of the velocity �v⊥η1...ηz
(p) ∈ (V (Sξη1

∩ . . . ∩ Sξηz
))⊥ for every

possible choice of intersection Sξη1
∩ . . .∩Sξηz

of constraints chosen among Sξ1 , . . . ,Sξk .

However, all these vertical vectors will not be used in the following, with the exceptions

of the “single” orthogonal velocities �v⊥ξl(p) ∈ (V (Sξl))
⊥ l = 1, . . . , k and the “global”

orthogonal velocity �v⊥1...k(p) ∈ (V (Sξ1 ∩ . . . ∩ Sξk))⊥.

3. Constitutive characterization of ideal multiple impulsive constraints. In

this section, we list the essential requirements for a general constitutive characteriza-

tion of an ideal multiple constraint C. Stressing once again that the only requirement

of preservation of kinetic energy is insufficient to uniquely determine the constitutive
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characterization for multiple constraints, we briefly discuss the leeway in the choice of a

constitutive characterization satisfying these requirements. Then we present our choice.

The map assigning to each left velocity pL the corresponding reactive impulse �Iideal(pL)

is defined in the form of an algorithm. Finally we discuss the main properties of this

constitutive characterization and of the algorithm.

3.1. General aspects. The geometric construction described in the previous section

gives us all the instruments to present ideal constitutive characterizations for a multiple

constraint C = {Sξ ⊂ M, ξ = 1, . . . , r} in a very general form. The main fixed points

that we must take into account in the assignment of the map (6) are:

a) we require the preservation of kinetic energy of the system before and after the

contact with the constraints for every frame of reference for which the require-

ment has a clear meaning. This is an ideality requirement.

b) In the absence of additional information about the constraints, we must not

distinguish the elements of C involved in a multiple contact. This is an isotropy

requirement.

c) In case of single contact with only one of the elements of C, the constitutive

characterization must coincide with (8). This is a coherence requirement.

Let π(pL) ∈ Sξ1 ∩ . . . ∩ Sξk and suppose, for simplicity, that pL is an incoming

velocity for all the constraints Sξl , l = 1, . . . , k. The constitutive characterization for the

multiple contact can in general involve all the possible orthogonal velocities �v⊥η1...ηz
(pL) ∈

(V (Sξη1
∩ . . . ∩ Sξηz

))⊥ for every possible choice of intersection Sξη1
∩ . . . ∩ Sξηz

of the

constraints Sξ1 , . . . ,Sξk . However, condition c) implies that no distinction can be done

among the Sξ1 , . . . ,Sξk .

A very simple choice of constitutive characterization satisfying conditions a), b), c)

involves the sole global orthogonal velocity �v⊥1...k(pL) ∈ (V (Sξ1 ∩ . . .∩Sξk))⊥, and in this

case the most reasonable choice is analogous to (8). Nevertheless this choice does not

take into account the nature of the constraint C as formed by constraints of codimension

1.

To do so, we can involve the orthogonal velocities �v⊥ξl(pL) ∈ (V (Sξη))⊥, l = 1, . . . , k.

In this case, the map (6) can be assigned in the form

�Iideal : i∗(J1(M)) → i∗(V (M))

pL � λ1�v
⊥
ξ1

(pL) + . . . + λk�v
⊥
ξk

(pL),
(10)

but different coefficients λj would distinguish the elements of the multiple contact. Then

the simplest constitutive characterization involving the velocities �v⊥ξl(p) and satisfying

condition b) is

�Iideal : i∗(J1(M)) → i∗(V (M))

pL � λ
(
�v⊥ξ1(pL) + . . . + �v⊥ξk(pL)

) (11)
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with the coefficient λ suitable to ensure condition a). Then we prove the following

Lemma 3.1. The coefficient λ of the definition (11) satisfying the ideality requirement is

λ = −2
Φ
(
�v⊥1...k(pL), �v⊥ξ1(pL) + . . . + �v⊥ξk(pL)

)
Φ
(
�v⊥ξ1(pL) + . . . + �v⊥ξk(pL), �v⊥ξ1(pL) + . . . + �v⊥ξk(pL)

) . (12)

Proof. For every left–velocity pL and frame of reference h ∈ H�ξ1...ξk
, we have to

impose the preservation of kinetic energy of the system with respect to the frame h ∈
H�ξ1...ξk

, that is,

Kh(pL) = Kh(pL + �Iideal(pL)) ∀pL ∈ i∗(J1(M)), ∀h ∈ H�ξ1...ξk
.

This means

1

2
Φ (pL − h,pL − h) =

1

2
Φ

(
pL + �Iideal(pL) − h,pL + �Iideal(pL) − h

)
or, that is the same,

2 Φ
(
pL − h, �Iideal(pL)

)
+ Φ

(
�Iideal(pL), �Iideal(pL)

)
= 0.

Using (11) and the projection operators P�ξ1...ξk
and P⊥

�ξ1...ξk
, we can split pL − h =

[P�ξ1...ξk
(pL) − h] + �v⊥1...k(pL) so that we obtain

2 Φ
(
[P�ξ1...ξk

(pL) − h] + �v⊥1...k(pL), λ
(
�v⊥ξ1(pL) + . . . + �v⊥ξk(pL)

))

+Φ
(
λ
(
�v⊥ξ1(pL) + . . . + �v⊥ξk(pL)

)
, λ

(
�v⊥ξ1(pL) + . . . + �v⊥ξk(pL)

))
= 0.

Since λ must be different from zero, the thesis follows from the orthogonality between

the vectors P�ξ1...ξk
(pL) − h and �v⊥ξl(pL) for all l = 1, . . . , k. �

3.2. The algorithm. The effective application of the constitutive characterization de-

scribed above to significant physical situations is not immediate, since a detailed analysis

of the impact is necessary, mainly in order to determine which of the one–dimensional

constraints forming the multiple constraint C is really involved in the impact, and if the

resulting “right–velocity” is an outgoing velocity for C. Then we describe the proce-

dure in form of an algorithm generalizing the constitutive characterization of a single

constraint (8). By the very nature of the method, the approach is of event–driven type.

Given a left–velocity pL ∈ J1(M) and a set C = {Sξ ⊂ M, ξ = 1, . . . , r} of con-

straints satisfying the dimensional, regularity and independence conditions of Section 2,

then:

Step 1. Calculate cont(π(pL)):

i) if cont(π(pL)) = ∅, then the system is not in contact with any constraints.

Then go to Step FINAL.

ii) If cont(π(pL)) = {ξη1
, . . . , ξηz

} 	= ∅, then the system is in (possibly multiple)

contact with the constraints Sξη1
, . . . ,Sξηz

. Then go to the next step.

Step 2. Determine the generators �u⊥
ξηa

of (V (Sξηa
))⊥ in the space–time configuration

π(pL) for all a = 1, . . . , z. Then go to the next step.
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Step 3. Determine the orthogonal velocities �v⊥ξηa (pL) ∈ (V (Sξηa
))⊥ for all a = 1, . . . , z.

Then go to the next step.

Step 4. For all a = 1, . . . , z, calculate the scalar product Φ
(
�v⊥ξηa (pL), �u⊥

ξηa

)
:

i) if a is such that Φ
(
�v⊥ξηa (pL), �u⊥

ξηa

)
≥ 0, then the system is in contact with

Sξηa
but the system does not impact with Sξηa

, since �v⊥ξηa (pL) is an outgoing

velocity for Sξηa
.

ii) if a is such that Φ
(
�v⊥ξηa (pL), �u⊥

ξηa

)
< 0, then the system is in contact

with Sξηa
and the system impacts with Sξηa

, since �v⊥ξηa (pL) is an incoming

velocity for Sξηa
.

Determine the set {β1, . . . , βl}⊂{η1, . . . , ηz} of indexes such that Φ
(
�v⊥ξβb

(pL), �u⊥
ξβb

)
< 0 for all b = 1, . . . , l. Then go to the next step.

Step 5. i) If {β1, . . . , βl} = ∅, then go to Step FINAL;

ii) if {β1, . . . , βl} is formed by a single index {χ}, then go to Step 6;

iii) if {β1, . . . , βl} 	= ∅ and it is not formed by a single index {χ}, then go to

Step 7.

Step 6. Set

�Iideal(pL) = −2�v⊥χ (pL),

pL := pL + �Iideal(pL).

Then go back to Step 3.

Step 7. Determine the orthogonal velocity �v⊥β1...βl
(pL), then go to the next step.

Step 8. Calculate the coefficient

λ = −2
Φ
(
�v⊥β1...βl

(pL), �v⊥ξβ1
(pL) + . . . + �v⊥ξβl

(pL)
)

Φ
(
�v⊥ξβ1

(pL) + . . . + �v⊥ξβl
(pL), �v⊥ξβ1

(pL) + . . . + �v⊥ξβl
(pL)

) .
Then go to the next step.

Step 9. Set

�Iideal(pL) = λ
(
�v⊥ξβ1

(pL) + . . . + �v⊥ξβl
(pL)

)
,

pL := pL + �Iideal(pL).

Then go back to Step 3.

Step FINAL. Set pR := pL.

3.3. Remarks about the algorithm. Some remarks are in order to clarify the charac-

teristics of the iterative method described above.

1) The algorithm does not change the absolute velocity of the system when the

system is not in contact with any constraint (Step 1, pt. i)), and also when the

system is in contact with one or more constraints but its left–velocity pL is not

an incoming velocity for C (Step 5, pt.1)). Of course in this case the algorithm

stops after the first iteration.

2) The algorithm generalizes the constitutive characterization (8) when the set C of

constraints is formed by a single constraint S. In fact, once the contact is assured

(by Step 1, pt. ii)), if pL is not an incoming velocity (Step 4, pt. i)), then we
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are in the case of Step 5, pt. i) and the velocity does not change (and �I(pL) = 0

such as in the second row of (8)). Otherwise, if pL is an incoming velocity (Step

4, pt. ii)), then we have to apply Step 5, pt. ii) and Step 6, obtaining a result

analogous to the first row of (8). It is a straightforward matter to show that the

new pL determines an outgoing orthogonal velocity. Then Step 4, pt. i) works

and the algorithm stops after the first iteration giving the same result of (8).

Then the constitutive characterization complies with condition c) of Subsection

3.1.

3) For effective multiple impact, the algorithm handles the elements of C involved in

the impact in a uniform manner. This is a clear consequence of the structure of

the coefficient (12) and of the discussion before Lemma 3.1. Then the constitutive

characterization complies with condition b) of Subsection 3.1.

4) The algorithm preserves the kinetic energy of the system with respect to all

the frames of reference h ∈ H�1...r = {h ∈ HM|h ∈ H�J1(Sξ)
ξ = 1, . . . , r}.

More precisely, the algorithm preserves the kinetic energy of the system with

respect to all the frames of reference h ∈ H�β1...βr
⊃ H�1...r for which the subset

C′ = {Sβb
, b = 1, . . . , z} ⊂ C formed by all the constraints Sβb

effectively involved

in the impact could be considered at rest.

The conservation of kinetic energy is obvious when the system does not have

collision or have a collision with a single constraint. For effective multiple impact,

the conservation of kinetic energy follows from the property of the coefficient (12)

of Lemma 3.1. Then the constitutive characterization complies with condition

a) of Subsection 3.1.

5) The need to go back to Step 3 at the end of Step 6 and Step 9 is due to the

possibility that the new pL given by Step 6 or Step 9 is an incoming velocity for

constraints previously excluded by the impact by Step 4, i). This can occur only

in case of multiple contact, but it can happen even for very simple systems such

as the Newton Cradle (whose behavior will be analyzed in the next section).

6) The algorithm stops when the conditions Φ
(
�u⊥
ξηa

, �v⊥ξηa (pL)
)

≥ 0 hold for all

the orthogonal velocities �v⊥ξηa (pL), a = 1, . . . , z, that is, when pR is an outgoing

velocity for C. A detailed analysis of the conditions to ensure that the algorithm

stops, the so–called termination analysis, is not in line with the aims of this paper

but we sketch this argument in Section 5.

7) When the constraints Sξ ∈ C are known in their cartesian form FSξ
(t, xi) = 0,

taking into account Lemma 1.1, the application of the algorithm can be shortened

by replacing Steps 2 and 4 with a single step: we can determine the incoming or

outgoing nature of pL with respect to Sξηa
just after Step 1 by calculating the

sign of pL(FSξηa
) in the contact position of the system. Then we can proceed

determining the orthogonal velocities �v⊥ξβb
(pL).

Let us stress the fact that the constitutive characterization determined by the al-

gorithm is not the only one respecting the conditions a), b), c) of Subsection 3.1,

since other characterizations can be constructed by using all the possible orthogonal

velocities �v⊥η1...ηz
(pL) ∈ (V (Sξη1

∩ . . . ∩ Sξηz
))⊥ for every possible choice of intersection
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Sξη1
∩ . . . ∩ Sξηz

of the constraints Sξ1 , . . . ,Sξk involved in the impact. However, the

characterization determined by the algorithm is the simplest one taking into account the

geometric structure of the multiple constraint.

4. Examples. In this section we present the application of the algorithm to simple

mechanical systems inspired by simplified billiard situations. Moreover, when the com-

plexity of the calculation will allow, we compare the different behaviors of the system

thought of as subject to an intersection of constraints of codimension 1 or simply as

subject to an unspecified constraint of codimension greater than 1.

Example 1. The Newton Cradle. Five equal disks of mass M and radius R can move

in a plane. Labelling the disks with the numbers 1, 2, 3, 4, 5, the space–time configuration

is described by 16 coordinates (t, xi, yi, ϑi), i = 1, . . . , 5 where (xi, yi) are the coordinates

of the center of the i–th disk and ϑi is its orientation. The set of constraints is given

(with obvious notation) by the functions

S(i,j) : (xj − xi)
2 + (yj − yi)

2 − 4R2 = 0 i, j = 1, . . . , 5, i < j.

We consider the particular case when the object disks 2, 3, 4 and 5 are at rest and in

contact with their centers aligned on a straight line, while the cue disk 1 moves in the

straight line direction and collides with disk 2 (see the upper and middle parts of Fig. 1).

t0 − h
1

1

2

0

0

0

3 4 5

2 3 4 5

1 2 3 4 5

t0 + h

t0

v

v

v

Fig. 1. Newton Cradle with one disk moving

In this case we can consider pL = ∂
∂t +v0

∂
∂x1

with v0 > 0, cont(π(pL)) = {(1, 2), (2, 3),

(3, 4), (4, 5)}, so that Step 1, pt. ii) applies.

We determine the nature of the left–velocity pL with respect to the contact con-

straint C = {S(1,2), S(2,3), S(3,4), S(4,5)} by using the shortened version of the algorithm
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described in Remark 7) of Subsection 3.3. We have

pL(S(1,2)) = −4Rv0 < 0,

pL(S(2,3)) = pL(S(3,4)) = pL(S(4,5)) = 0,

so that the velocity pL is an incoming velocity only for the constraints S(1,2) (and it is

tangent to the other constraints). The standard calculation of �v⊥(1,2)(pL) gives

�v⊥(1,2)(pL) = +
1

2
v0

∂

∂x1
− 1

2
v0

∂

∂x2
.

We apply Steps 5.ii) and 6 obtaining the “new” left–velocity

pL := pL − 2�v⊥(1,2)(pL) =
∂

∂t
+ v0

∂

∂x2

and we have to restart determining the nature of the new left-velocity with respect to C.

We have:

pL(S(1,2)) = 4Rv0 > 0,

pL(S(2,3)) = −4Rv0 < 0,

pL(S(3,4)) = pL(S(4,5)) = 0,

so that the new left–velocity is an outgoing velocity for S(1,2) and an incoming velocity

for S(2,3) (and it is tangent to the other contact constraints). The standard calculation

of �v⊥(2,3)(pL) gives

�v⊥(2,3)(pL) = +
1

2
v0

∂

∂x2
− 1

2
v0

∂

∂x3
.

We apply Steps 5.ii) and 6 obtaining the “new” left–velocity

pL := pL − 2�v⊥(2,3)(pL) =
∂

∂t
+ v0

∂

∂x3

and we have to restart. We have:

pL(S(1,2)) = 0,

pL(S(2,3)) = 4Rv0 > 0,

pL(S(3,4)) = −4Rv0 < 0,

pL(S(4,5)) = 0,

so that the new left–velocity is an outgoing velocity for S(2,3) and an incoming velocity

for S(3,4) (and it is tangent to the other contact constraints).

Two further iterations of the algorithm give the left–velocity

pL =
∂

∂t
+ v0

∂

∂x5

such that

pL(S(1,2)) = pL(S(2,3)) = pL(S(3,4)) = 0,

pL(S(4,5)) = 4Rv0 > 0 .

Then, at last, we have that pL is a globally outgoing velocity for all the elements of C.

Therefore we can apply Step FINAL and we obtain the right–velocity

pR =
∂

∂t
+ v0

∂

∂x5
.
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The lower part of Fig. 1 illustrates the (well-known) ideal behavior of the system after

the impact: the cue disk together with disks 2, 3 and 4 remain at rest and disk 5 starts

moving with the velocity that the cue disk had before the impact.

It can be easily shown that an initial spin of the cue disk does not have significant

effect on the impact and it will be found unchanged in the final right–velocity. Then,

if the initial left–velocity is pL = ∂
∂t + v0

∂
∂x1

+ ω0
∂

∂ϑ1
, we obtain a final right–velocity

pL = ∂
∂t + v0

∂
∂x5

+ ω0
∂

∂ϑ1
with the additional spin component still pertaining to the cue

disk.

Note that, if we consider the set C of constraints as a single constraint of codimension

4 and we apply the constitutive characterization based on the global orthogonal velocity

�v⊥(1,2)...(4,5)(pL), we obtain the outgoing velocity

pR =
∂

∂t
− 3

5
v0

∂

∂x1
+

2

5
v0

∂

∂x2
+

2

5
v0

∂

∂x3
+

2

5
v0

∂

∂x4
+

2

5
v0

∂

∂x5
.

This means that disks 2,3,4 and 5 start moving in the x direction with velocity 2
5 v0 and

the cue disk goes back in the x direction with velocity − 3
5 v0 (see Fig. 2). It is known

that this behavior, although formally correct, does not have an experimental validation.

Moreover, it is the same result that can be obtained for the impact of the cue disk with

the rigid body formed by the four disks thought of as fixed together. This was easily

predicted, since in this case the method does not barely take into account the nature of

multiple contact, but only the “collective” impact with the entire constraint neglecting

the incoming or outgoing character of the single velocities involved in the impact.

t0 − h
1 2

0

3 4 5

t0 + h

t0

3
5

2
5

2
5

2
5

2
5

v

0

0

v

v 0v 0v 0v 0v

Fig. 2. Alternative Newton Cradle with one disk moving
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It is well known that the mechanical system describing the Newton Cradle can model

different impacts, for instance the one with cue disks 1 and 2. In this case, starting

with the left-velocity pL = ∂
∂t + v0

∂
∂x1

+ v0
∂

∂x2
with v0 > 0 the algorithm gives pR =

∂
∂t + v0

∂
∂x4

+ v0
∂

∂x5
, in agreement with the experimental results.

We remark that the Newton Cradle shows in a very simple situation the necessity of

the return to Step 3 of the algorithm.

Example 2. Split n.1. Three equal disks of mass M and radius R can move in a plane.

Labelling the disks with the numbers 1, 2, 3, the space–time configuration is described by

10 coordinates (t, xi, yi, ϑi), i = 1, . . . , 3 where (xi, yi) are the coordinates of the center

of the i–th disk and ϑi is its orientation. The set of constraints is given by the functions

S(1,2) : (x2 − x1)
2 + (y2 − y1)

2 − 4R2 = 0 ,

S(1,3) : (x3 − x1)
2 + (y3 − y1)

2 − 4R2 = 0 ,

S(2,3) : (x3 − x2)
2 + (y3 − y2)

2 − 4R2 = 0 .

We consider the particular case when the object disks 2 and 3 are at rest and in

contact, while the cue disk 1 moves and simultaneously impacts with both the disks 2

and 3 (see Fig. 3).

Fig. 3. Simultaneous impact of a disk with two disks at rest and in contact

In this case we can consider pL = ∂
∂t +μv0

∂
∂x1

+v0
∂

∂y1
with v0 > 0 and cont(π(pL)) =

{(1, 2), (1, 3), (2, 3)}, so Step 1, pt. ii) applies.

In the contact space–time configuration we have then:

pL(S(1,2)) = 2(μ−
√

3)Rv0 < 0 ⇔ μ <
√

3,

pL(S(1,3)) = −2(μ +
√

3)Rv0 < 0 ⇔ μ > −
√

3,

pL(S(2,3)) = 0.

The left–velocity is then an incoming velocity for both S(1,2) and S(1,3) if and only if

−
√

3 < μ <
√

3 (and it is tangent to the other contact S(2,3)). In this case we have then
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a true multiple impact. The standard calculation of �v⊥(1,2)(pL), �v⊥(1,3)(pL) gives

�v⊥(1,2)(pL) =

(
μ−

√
3

8
v0

)
∂

∂x1
−
√

3

(
μ−

√
3

8
v0

)
∂

∂y1

−
(
μ−

√
3

8
v0

)
∂

∂x2
+
√

3

(
μ−

√
3

8
v0

)
∂

∂y2
,

�v⊥(1,3)(pL) =

(
μ +

√
3

8
v0

)
∂

∂x1
+
√

3

(
μ +

√
3

8
v0

)
∂

∂y1

−
(
μ +

√
3

8
v0

)
∂

∂x3
−
√

3

(
μ +

√
3

8
v0

)
∂

∂y3
.

Applying Step 7, we obtain

�v⊥(1,2)/(1,3)(pL) =
1

3
μv0

∂

∂x1
+

3

5
v0

∂

∂y1

−
(
μ

6
−

√
3

10

)
v0

∂

∂x2
+
√

3

(
μ

6
−

√
3

10

)
v0

∂

∂y2

−
(
μ

6
+

√
3

10

)
v0

∂

∂x3
−
√

3

(
μ

6
+

√
3

10

)
v0

∂

∂y3
.

Step 8 gives

λ = −2
Φ
(
�v⊥(1,2)/(1,3)(pL), �v⊥(1,2)(pL) + �v⊥(1,3)(pL)

)
∥∥∥�v⊥(1,2)(pL) + �v⊥(1,3)(pL)

∥∥∥2 = − 8

3

μ2 + 3

μ2 + 5

and then

pL := pL − 8

3

μ2 + 3

μ2 + 5

(
�v⊥(1,2)(pL) + �v⊥(1,3)(pL)

)

:=
∂

∂t
+

(
μ2 + 9

3(μ2 + 5)

)
μv0

∂

∂x1
−
(
μ2 + 1

μ2 + 5

)
v0

∂

∂y1

+
1

3

(
μ2 + 3

μ2 + 5

)
(μ−

√
3) v0

∂

∂x2
−

√
3

3

(
μ2 + 3

μ2 + 5

)
(μ−

√
3) v0

∂

∂y2

+
1

3

(
μ2 + 3

μ2 + 5

)
(μ +

√
3) v0

∂

∂x3
+

√
3

3

(
μ2 + 3

μ2 + 5

)
(μ +

√
3) v0

∂

∂y3
.

(13)

Tedious but straightforward calculation shows that, when −
√

3 < μ <
√

3, the three

values pL(S(1,2)),pL(S(1,3)),pL(S(2,3)) are all positive. We can apply Step FINAL and

then (13) is the outgoing right–velocity pR of the system.

The right side of Fig. 3 illustrates the behavior of the system after the impact in the

particular case μ = 1/
√

3.
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Once again some remarks about the results of this example are in order. The first is

that once again, in case of initial spin of the cue disk, the algorithm does not affect the

spin component of the cue ball. If the left-velocity is pL = ∂
∂t +μv0

∂
∂x1

+ v0
∂

∂y1
+ω0

∂
∂ϑ1

,

the right-velocity pR is given by (13) with an additional component ω0
∂

∂ϑ1
.

Moreover, Example 2 shows once again the difference between the multiple constraint

viewed as formed by two constraints of codimension 1 and the multiple constraint viewed

as a single constraint of codimension 2. In the second case, applying (7), we obtain:

pR = pL − 2�v⊥(1,2)/(1,3)(pL)

=
∂

∂t
+

1

3
μv0

∂

∂x1
− 1

5
v0

∂

∂y1

+

(
μ

3
−

√
3

5

)
v0

∂

∂x2
−
√

3

(
μ

3
−

√
3

5

)
v0

∂

∂y2

+

(
μ

3
+

√
3

5

)
v0

∂

∂x3
+
√

3

(
μ

3
+

√
3

5

)
v0

∂

∂y3
.

(14)

When −
√

3 < μ <
√

3, this is actually an outgoing velocity for C that is in general

different from (13).

However, when μ = 0, that is, when the cue disk moves vertically with initial ve-

locity pL = ∂
∂t + v0

∂
∂y1

and symmetrically strikes both the disks 2 and 3, the outgo-

ing velocities (13) and (14) are the same. This is due to the fact that, when μ = 0,

there exists a coefficient β such that �v⊥(1,2)/(1,3)(pL) = β
(
�v⊥(1,2)(pL) + �v⊥(1,3)(pL)

)
. The

proportionality of the two vectors entails that the final right–velocity pR can be in-

differently obtained by the condition pR = pL − 2�v⊥(1,2)/(1,3)(pL) or the condition

pR = pL − λ
(
�v⊥(1,2)(pL) + �v⊥(1,3)(pL)

)
. The same situation happens in Example 1.2

if we consider the constraint S as intersection of the two constraints S1 : y = 0 and

S2 : z = 0.

Finally, note that a procedure considering two consecutive impacts with the constraints

S(1,2) and S(1,3) gives an evident incoherence even when μ = 0. In fact this procedure

gives different results if we consider first the impact with S(1,2) and then with S(1,3) or

vice versa.

Example 3. Split n.2. Four equal disks of mass M and radius R can move in a plane.

Labelling the disks with the numbers 0, 1, 2, 3, the space–time configuration is described

by 13 coordinates (t, xi, yi, ϑi), i = 0, . . . , 3 where (xi, yi) are the coordinates of the center

of the i–th disk and ϑi is its orientation. The set of constraints is given by the functions

S(i,j) : (xj − xi)
2 + (yj − yi)

2 − 4R2 = 0 i, j = 0, . . . , 3, i < j.
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We consider the particular case represented in Fig. 4: the object disks 1, 2 and 3 are

at rest and in contact and the cue disk 0 moves and impacts 1. Let ϕ be the angle formed

by the direction of the velocity of the cue disk and the line determined by the centers of

disks 0 and 1 (see Fig. 4). Moreover, let the direction of the velocity of the cue disk be

orthogonal to the line determined by the centers of disks 2 and 3.

Fig. 4. Disk colliding with a disk at rest in contact with two other disks

In this case we have cont(π(pL)) = {(0, 1), (1, 2), (1, 3), (2, 3)}. Given the initial left–

velocity p0
L = ∂

∂t + u0
∂

∂y0
with u0 > 0, the application of the algorithm points out

that:

• p0
L has an incoming nature only for the constraint S(0,1). The first iteration of

the algorithm gives a “second” left–velocity p1
L such that disk 1 moves in the

direction determined by the positions of the centers of the disks 0 and 1, and the

cue disk moves orthogonally to the direction determined by the positions of the

centers.

• The “second” left–velocity p1
L has outgoing nature for both S(0,1), S(2,3). More-

over it has incoming nature for both S(1,2) and S(1,3) if and only if −
√

3 < tanϕ <√
3. In this case, p1

L plays the same role of the initial velocity of Example 2. The

second iteration of the algorithm gives a “third” left–velocity p2
L analogous to

(13) with additional components concerning the cue disk (unchanged with respect

to those of p1
L).
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• The “third” left–velocity p2
L has outgoing nature for S(1,2), S(1,3), S(2,3). More-

over it has incoming nature for S(0,1) if and only if −
√

2
√

3 − 3 < tanϕ <√
2
√

3 − 3. In this case it is necessary that at least one additional iteration of

the algorithm gives a “fourth” left–velocity p3
L.

Example 3 simultaneously presents some characteristics of Examples 1 and 2: it re-

quires more than a single iteration of the algorithm as in Example 1 and it presents

an effective multiple impact (if −
√

3 < tanϕ <
√

3) as in Example 2. Fig. 5 shows

the behavior of the system in the case ϕ = 0. The motion of the system turns out to

be symmetric, disks 2 and 3 move in the direction determined by the positions of the

centers of the disks in the impact configuration, disk 1 remains motionless and the cue

disk bounces back with one fifth of the initial velocity.

Fig. 5. Disk symmetrically colliding with a disk at rest in contact

with two other disks

Of course Examples 2 and 3 can be viewed as simplified versions of billiard shots. In

this sense, they give an idea of how complex can be the casuistry of behaviors even in

a restricted context such as a billiard table. Nevertheless, the algorithm can be applied

also, for instance, to the opening break shots illustrated in Fig. 6. The achievement of

the result, in the form of right–velocity of the system, becomes simply a (hard) matter

of calculation.

5. Final remarks and future developments. The approach, techniques and re-

sults presented in this paper can be considered a generalization to the case of multiple

constraints of the analogous approach, techniques and results presented in [1] in the case

of single constraint. However, due to the increased complexity of the multiple C/I phe-

nomenon with respect to the single one, some aspects could be subject to an additional

in-depth analysis.

A first remark concerns the algorithm described in Section 3: no termination analy-

sis of the algorithm has been performed in detail. In Section 4 we showed meaningful

examples where the algorithm, after a single or several iterations, terminates in a final
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Fig. 6. Billiard opening break shots

ending state giving the right–velocity of the system after the C/I phenomenon. Never-

theless there are simple systems for which the termination is not so evident. Consider,

for instance, a disk simultaneously impacting with two walls forming a suitable reentrant

corner: could the disk “rebound” between the walls endlessly? Could it “rebound” so

many times that the algorithm does not terminate after a reasonable number of itera-

tions? The answers to these two questions are respectively no and yes, but this specific

example is too complex to be analyzed here and it will be the subject of future works.

A second remark regards the examples presented in Section 4. In Example 1, the

theoretical results given by the algorithm and the well-known ideal behavior of the system

were briefly and satisfactorily compared. Nevertheless the Newton Cradle is a so classic

and basic problem that it was tackled with several different techniques, also in non-ideal

cases. We refer the interested reader to [12] and the references therein for a concise

overview of the several results about the Newton Cradle.

Regarding the other examples, the qualitative analysis of the results obtained when

the low complexity of the system allows explicit calculations makes us confident about

the accordance between theoretical and experimental results. Nevertheless a detailed

qualitative and quantitative comparison between theoretical and experimental results

were performed only in simple cases. The consistency between them can be explored

more thoroughly only once a sufficiently wide collection of experimental data is at our

disposal.

Further enhancements can be sought by weakening the restrictions on C, for example

the conditions of being positional, ideal, isotropic. More specifically, following an ap-

proach analogous to [10,13], generalizations of the results of this paper can be sought in

case of:

• systems subject to ideal multiple unilateral constraints of both positional and

kinetic nature, permanently or instantaneously acting on the system;

• systems subject to non–ideal frictionless multiple positional unilateral constraints,

for which the kinetic energy is not preserved;
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• systems subject to multiple positional unilateral constraints with friction;

• systems subject to anisotropic multiple constraints, for instance multiple con-

straints C whose elements Sξ ∈ C play different roles in the simultaneous impact.

Appendix: Coordinate–free and frame–invariant approaches. The usefulness

of a coordinate–free approach is a well-known aspect of the study of Classical Mechanics.

Then, the use of differential geometric techniques pertaining to a manifold Q, the so–

called configuration space associated to a mechanical system with a finite number of

degrees of freedom, is currently a common expertise.

It is, or it should be, equally well known that the coordinate–free approach to Classical

Mechanics is not related to the frame–independent approach, coordinates and frames

being two different concepts: the first is related to the (local) description of the points of

the configuration space Q, the second, in a very wide sense, is related to a rule identifying

the configuration space Q at different times.

In order to show the difference between these two concepts and the relevance of a

frame–independent approach to Classical Impulsive Mechanics, let us recall the simplest

coordinate–free description of the time evolution of the system: this is a curve P :

R → Q that, using local coordinates (q1, . . . , qn) in Q, is given by the rule P (t) =

(q1(t), . . . , qn(t)). The section γ : R → R×Q of the trivial product bundle t : R×Q → R

such that γ(t) = (t, q1(t), . . . , qn(t)) = (t, P (t)) has the same information of P (t) and

it involves the product bundle R×Q that fits more than the simple manifold Q for the

time-dependent description of the geometry of the system.

Unfortunately, the product bundle R × Q is appropriate for a coordinate–free de-

scription of the time evolution of the mechanical system, but it is not appropriate for a

frame–independent description. In fact the product bundle R × Q brings along a nat-

ural identification of the configuration space Q at different times: for each choice of a

coordinate system (q1, . . . , qn) on Q and different times t0, t1 of R, the map ϕ such that

ϕ(t0, q
1, . . . , qn) = (t1, q

1, . . . , qn) is a diffeomorphism of the fibres {t0}×Q and {t1}×Q
of the product bundle R×Q. Using a more modern language, the invariant (with respect

to fibred changes of coordinates in R×Q) vector field ∂
∂t determines a fibre–preserving

1–parameter group of diffeomorphisms of the product bundle.

It is elementarily known that velocity and kinetic energy do not have a frame–inde-

pendent mechanical meaning, and that they become meaningful mechanical quantities

only when referred to a frame of reference. With this in mind, it is clear that the common

idea of “vector velocity” vi ∂
∂qi ∈ R × T (Q) (where T (Q) is the tangent space of Q), is

not a possible velocity of the system (that is clearly a meaningless concept), but only a

possible velocity of the system in the frame of reference (associated to) ∂
∂t .

These well-known remarks are full of more or less evident consequences. An evident

one is that results obtained by using the geometric model given by the product bundle

R×Q and regarding the velocity of a mechanical system, or deduced involving the concept

of velocity, are obtained in an intrinsically “fixed frame” context. Therefore the frame

invariance of these results, if significant, should be proved as an additional feature.

Classical C/I Mechanics of constrained systems is one of the most important branches

of Classical Mechanics where this aspect should be taken into account. By the very nature
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of the C/I phenomenon, every characterization of the reaction exerted on the system by

the constraints in a C/I phenomenon necessarily involves the concept of velocity. In fact

the velocity is directly involved if we use the orthogonal and/or tangent components of

the velocity with respect to the constraints. This happens, for instance, in Coulomb’s

model of frictional impacts, or in Newton’s model of restitution. The velocity is indirectly

involved if we use arguments of balance consideration, for instance, the conservation of

kinetic energy.

It is a matter of fact that the majority of the results obtained, even in recent papers,

about Impulsive Mechanics described in the geometric context of the product bundle

R × Q (or worse in R × R
n), when involving the concept of velocity, are not proved to

be frame–independent. This should be even more clear by observing that the majority

of the results are obtained for the mechanical system where the constraints are at rest;

then in the specific (if it exists) rest frame of the constraints. The following example of

a mechanical system having a multiple impact highlights the critical aspect of a naive

geometric approach.

Example. A sphere of radius R moves in contact with a horizontal floor and has a

multiple impact with two vertical and orthogonal walls. Using a naive (but effective)

language, we can geometrize the floor with the condition z = 0, one of the walls with

x = 0, the other with y = 0 (see Fig. 7). However, the system is such that the points of

the two walls are not steady: the x = 0 wall is a sort of shutter, whose points go up and

down, for example with a harmonic motion z(t) = Az cos(ωzt + ϕz); the y = 0 wall is a

sort of sliding door, whose points go left and right, for example with a harmonic motion

x(t) = Ax cos(ωxt + ϕx).

Fig. 7. Multiple impact with time-dependent constraints

The usual configuration space for this system is a five–dimensional manifold Q locally

described by coordinates (x, y, ψ, ϕ, θ) where (x, y) are the coordinates of the center of

the sphere and (ψ, ϕ, θ) are its Euler angles. The unilateral constraints are described by

the inequalities x ≥ R, y ≥ R. Unfortunately, this geometrization is too naive to deal

with the problem of multiple impact. In fact a coordinate–free approach concerns only

the coordinates of Q. In particular, a change of coordinates in Q can modify only the
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geometric expressions of the configurations of the sphere and the geometric expressions

of the points of the walls, but it cannot express in any way the “motion” of the points

of the walls.

However, the motion of the walls is crucial in case of (multiple) impact with friction,

since the “tangential” velocities of the contact points depend on the “underlying” veloc-

ities of the points of the constraints. The too basic geometrization given by R ×Q and

R× T (Q) gives a clear meaning only to the velocity of the sphere with respect to “the”

rest frame ∂
∂t of the constraint z = R, but it does not take into account the motion of

the walls. Then it is not suitable to deal with frictional impact problems of this system.

Problems of this kind require the introduction (if possible) of a notion of rest frame of

the whole set of constraints.

Note that, unlike frictional impacts, a frictionless impact does not involve the tangen-

tial velocities of the points of the ball in contact with the vertical walls. In this case there

is no need of introducing “the” rest frame of the constraints (if ever it exists). However,

the mere geometric description {x ≥ R, y ≥ R} of the constraint is enough to introduce

the set H of “all possible rest frames” of the constraint. As has been also shown, this set

is indispensable to have a correct notion of orthogonal component of the velocity ([1]).

Far from being purely artificial, the example above models in a very simplified way

several possible C/I phenomena, for instance in billiard situations or more generally for

granular materials.
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