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Abstract. Zanaboni’s procedure for establishing Saint-Venant’s principle is extended

to anisotropic homogeneous transient heat conduction on regions that are successively

embedded in each other to become indefinitely elongated. No further geometrical re-

strictions are imposed. The boundary of each region is maintained at zero temperature

apart from the common surface of intersection which is heated to the same temperature

assumed to be of bounded time variation. Heat sources are absent. Subject to these con-

ditions, the thermal energy, supposed bounded in each region, becomes vanishingly small

in those parts of the regions sufficiently remote from the heated common surface. As

with the original treatment, the proof involves certain monotone bounded sequences, and

does not depend upon differential inequalities or the maximum principle. A definition of

an elongated region is presented.

1. Introduction. Previous discussions of decay in transient heat conduction include

that by Knowles [15], who is concerned with a semi-infinite cylinder and an energy

function over space-time related to that introduced here. It is shown that the function in

that part of the cylinder greater than a certain distance from the heated base possesses

an upper bound that exponentially decays with respect to that distance provided the

temperature vanishes at asymptotically large axial distance. Horgan, Payne, andWheeler

[10], who briefly review other main contributions, consider the same problem but treat

the cross-sectional spatial mean square norm of the temperature, and construct a similar
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exponentially spatially decaying upper bound. They conclude that decay is at least as

rapid as in the steady problem. Both studies involve a differential inequality for the

respective measures, whereas the present approach relies upon the Cauchy convergence

of a monotone sequence. An explicit distance function is not employed except in the

definition of an elongated region. Consequently, decay estimates of the kind derived in

[10, 15] are not to be expected.

Saint-Venant’s principle as postulated by Zanaboni [19] for linear elasticity relates to

a sequence of successively embedded regions that creates an elongated body of arbitrary

shape. The surfaces of the component regions have common intersection Γ which is the

only part of the respective surfaces subjected to the same prescribed self-equilibrated

load. Zero boundary data are prescribed over the remainder of the surface of each region

which are in equilbrium under zero body force. Zanaboni’s version of Saint-Venant’s

principle asserts that the strain energy becomes vanishingly small in those parts of the

indefinitely elongated body sufficiently remote from Γ,

The objective of this paper is to prove the corresponding assertion for classical

anisotropic homogeneous transient heat conduction in the absence of heat sources.. The

common surface Γ of the sequence of enlarging regions is subject to the same prescribed

temperature for all regions, in each of which the thermal energy is bounded. Further-

more, the time-derivative of the temperature over Γ is assumed bounded. The general

procedure is that originally devised by Zanaboni [19] but modified to incorporate certain

simplications introduced in [14]. Linear thermoelasticity is similarly treated in [12].

The argument is mainly algebraic and employs a fundamental inequality, derived using

integration by parts and standard inequalities, to demonstrate that a space-time measure

defined in terms of the thermal energy of the enlarging regions forms a monotonically

decreasing sequence that is bounded below. Saint-Venant’s principle as formulated by

Zanaboni then follows from the Cauchy and other convergence theorems.

Section 2 details the geometric context of the problem. A bounded elongated re-

gion, defined in Section 3, is used to generate an unbounded elongated region. Part of

the surface of this first region forms the common intersection Γ of the surfaces of all

subsequent regions and is heated to a prescribed temperature which is the same for all

regions. Complementary parts of the respective surfaces are at zero temperature. The

initial boundary value problems are stated in Section 4, while the positive-definite ther-

mal energy measures, assumed uniformly bounded and in terms of which the analysis is

conducted, are introduced in Section 5. The main part of Section 5, however, is devoted

to the construction of the fundamental inequality crucial for the proof in Section 7 of

Zanaboni’s version of Saint-Venant’s principle. In Section 6, the fundamental inequality

is employed to derive a monotonically decreasing bounded below sequence of the thermal

energies which by the Cauchy and Bolzano-Weierstrass convergence theorems leads to

bounds for the thermal energy in a region sufficiently remote from the common surface

Γ. The appropriate form of Saint-Venant’s principle is expressed as a theorem stated

and proved in Section 7. Section 8 consists of some brief concluding remarks.

The usual conventions are adopted of summation over repeated subscripts and a sub-

script comma to denote partial differentiation. Vector and tensor quantities are not
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typographically distinguished, while subscripts have the range 1, 2, 3 apart from η which

is used as an additional time variable. A solution of sufficient smoothnees is assumed

always to exist.

2. Geometry. A bounded region of three dimensional Euclidean space is indefinitely

enlarged by successive accretion, such that n accretions generate (n + 1) regions, each

embedded in its successor. Accordingly, in terms of a notation convenient for later

purposes, the sequence of open simply connected regions {Ωj} , j = 1, . . . n+ 1, satisfies

the inclusions

∅ �= Ωn+1−r ⊂ Ωn+1−s, 0 ≤ s < r ≤ n. (2.1)

The final enlarged region in the sequence is Ωn+1, while each accretion used in its con-

struction is of size and shape that may be chosen appropriately to the problem under

consideration. The surface ∂Ωn of each region Ωn is Lipschitz continuous.

Note that s, r are integers and unless equal thus differ by at least 1.

Let Ω0 = ∅. The accretions D
(n+1)
i are defined by

D
(n+1)
i = Ωn+1−i\Ωn−i, 0 ≤ i ≤ n, (2.2)

D(n+1)
n = Ω1\Ω0 = Ω1. (2.3)

At the (m + 1) stage, where m > n, further (m − n) accretions have been added to

Ωn+1 to form a region Ωm+1. In consequence, the new region consists of new accretions

Dm+1
j , j = 0, 1, . . . (m− n) plus those used to form Ωn+1, so that

D
(m+1)
(m−n)+i = D

(n+1)
i , i = 0, 1, 2 . . . n. (2.4)

Correspondingly, regions in the sequence may be identified according to the relations

Ωm+1−j = Ωn+1−i, j = (m− n) + i, i = 0, 1, 2 . . . n. (2.5)

The non-empty part of the boundary common to all ∂Ωn is denoted by Γ where

∅ �= Γ ⊂ ∂Ωn ∩ ∂Ωn+1, n = 1, 2, 3, . . . , (2.6)

while that part of the surface ∂Ωn contained in Ωn+1 is represented by Σn:

Σn = ∂Ωn ∩ Ωn+1, n = 1, 2, 3, . . . . (2.7)

We require the sequence of regions Ωn, n = 1, 2, 3, . . . to be elongated. This term is

defined in the next section.

3. Elongated regions. An intuitive understanding of what is meant by an elongated

region is that it has at least one dimension much larger than the others. This descrip-

tion, however, fails to restrict the shape or connectivitly of the region, which becomes

important when discussing Saint-Venant’s principle. Cavities and cracks can create stress

ooncentrations which invalidate the usual principle.
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Our definition of an elongated region depends upon a basic region that has the fol-

lowing properties.

Definition 3.1 (The basic region). The basic region is a bounded region Ω with

smooth boundary ∂Ω for which the distance function is d(x, y) for x, y ∈ Ω ∪ ∂Ω. Let

∂Ω be decomposed into mutually disjoint but individually connected parts such that

∂Ω = Γ ∪ ∂Ω1 ∪ ∂Ω2. When x ∈ Γ, z ∈ ∂Ω1, and y ∈ ∂Ω2 we require d(x, z) ≤ d(x, y).

Moreover, let x̄ ∈ Γ and ȳ ∈ ∂Ω2 be chosen to satisfy

d(x̄, ȳ) = sup
x,y

d(x, y).

Take planes perpendicular to the straight line joining x̄, ȳ and let the intersection with

Ω of the plane through the point x̄+ λȳ be the cross-section P (λ). Define

λ = min (λ : P (λ) ∩ ∂Ω1 �= ∅), (3.1)

λ̄ = max (λ : P (λ) ∩ ∂Ω1 �= ∅). (3.2)

Now vary Γ, ∂Ω1, ∂Ω2 by the addition or subtraction of respective parts of the bound-

ary ∂Ω such that the endpoints of Γ lie on P (λ) and the endpoints of ∂Ω2 lie on P (λ̄).

Let each P (λ) be singly connected and satisfy the following conditions:

c ≤ |P (λ)| < M < ∞, λ ≤ λ ≤ λ̄, (3.3)

0 < |P (λ)| < M < ∞, 0 < λ ≤ λ, (3.4)

0 = |P (0)|, (3.5)

0 < |P (λ)| < M < ∞, λ̄ ≤ λ < 1, (3.6)

0 = |P (1)|, (3.7)

where c, M are speciified positive constants, and |P (λ)| denotes the diameter of P (λ).

These conditions are designed to prevent cross-sections from either collapsing to zero

or becoming unbounded. The assumption of single connectedness precludes Ω from

containing cavities in R
3 or (wide) slits in R

2. Note that the ratio d(x̄, ȳ)/M may be

arbitrarily large but finite. For simplicity, wedges, thick infinite plates, quarter-spaces,

cones, half-spaces, the whole space, and exterior regions are excluded, but such regions

may be easily incorporated into our analysis. On the other hand, cavities and cracks

are likely to require a modified treatment, and in consequence their consideration is

postponed.

Definition 3.2 (Elongated region). Let Ωn, n = 1, 2, 3, . . . form the embedded se-

qeunce defined in Section 2. Then Ωn, n = 1, 2, 3, . . . comprise a sequence of elongated

regions provided each member of the sequence is the union of basic regions Ωn+1\Ωn, n =

0, 1, 2, . . ., and in addition satisfy

lim
n→∞

|Ωn| → ∞.. (3.8)

Cylindrical regions, regions that spiral within a wedge or cone, or are helical in shape,

or are non-contiguous (i.e., no self-contact) entangled knots are examples of a sequence

of elongated regions in the sense of Definition 3.2.
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4. The initial boundary value problems. Each region Ωn, defined in the previ-

ous sections, is occupied by a homogeneous heat conducting material with the same heat

conduction symmetric tensor κ. The treatment can be extended to spatially inhomoge-

neous heat conduction materials in an obvious manner. A related, but different, study of

functionally graded heat conducting materials with similar non-homogeneous properties

is presented in [11] for a cylinder, while [17] examines, again by a different method, a

certain non-linear parabolic system for both a cylinder and cone. With respect to an

orthogonal Cartesian x1x2x3-coordinate system common to all regions, the components

of κ are κij = κji, i, j = 1, 2, 3. It is supposed that κ is positive-definite in the sense that

the following inequality holds for an assigned positive constant κ0 and for each vector

ξ ∈ R
3:

κ0ξiξi ≤ κijξiξj . (4.1)

The (positive) temperature in Ωn is denoted by u(n)(x, t) ∈ R, where (x, t) ∈ Ωn ×
[0, Tn) and [0, Tn) is the maximal time interval of existence for Ωn. Assume that Tn > 0

and that T = minn Tn > 0. Assume further that u(n) is twice spatially and once

temporally differentiable and define the second order linear partial differential operator

L to be

L(u(n)) =
(
κiju

(n)
,i

)
,j
, (x, t) ∈ Ωn × [0, T ). (4.2)

The generalised normal derivative on ∂Ωn is denoted by

∂u(n)

∂n
= niκiju

(n)
,j , (x, t) ∈ ∂Ωn × [0, T ), (4.3)

where ni are the Cartesian coordinates of the generic unit outward normal vector on

∂Ωn, n = 1, 2, 3, . . ..

Let w(x, t), (x, t) ∈ Γ × [0, T ), be a prescribed function that for an assigned positive

constant M1 satisfies the assumption:

M2
1 =

∫ T

0

∫
Γ(η)

w2
,η dSdη. (4.4)

In particular, we have M1 = 0 when w is independent of time. This condition, however,

is incompatible with the homogeneous initial data assumed below.

The sequence of initial boundary value problems to be studied is specified by

L
(
u(n)

)
= u̇(n)(x, t), (x, t) ∈ Ωn × [0, T ), (4.5)

u(n)(x, t) = w(x, t), (x, t) ∈ Γ× [0, T ), (4.6)

= 0, (x, t) ∈ (∂Ωn\Γ)× [0, T ), (4.7)

u(n)(x, 0) = 0, x ∈ Ωn, (4.8)

where n = 1, 2, 3, . . ., and a superposed dot indicates differentiation with respect to time.

Homogeneous initial data are adopted in (4.8) for convenience.
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5. Fundamental inequality. A fundamental inequality is derived which leads to

a monotone sequence studied in Section 6. For this purpose, we introduce the bilinear

function defined on a region Ω by

VΩ (u, v) =

∫ t

0

∫
Ω(η)

u,iκijv,j dxdη +
1

2

∫
Ω(t)

uv dx, (5.1)

where u, v ∈ C2 (Ω× [0, T )), and the notation Ω(t) indicates that relevant quantities are

evaluated at time t. In particular, we consider the thermal energy function obtained

when (5.1) is specialised to the form

VΩn

(
u(n), u(n+1)

)
=

∫ t

0

∫
Ωn(η)

u
(n)
,i κiju

(n+1)
,j dxdη +

1

2

∫
Ωn(t)

u(n)u(n+1) dx, (5.2)

where u(n) ∈ C2 (Ωn × [0, T )). It is also supposed that

VΩn
(u(n), u(n)) ≤ M2, n = 1, 2, . . . , (5.3)

for prescribed positive constant M2 independent of n.

The function VΩ∞\Ωn

(
u(∞), u(∞)

)
is employed in [15] to establish exponential decay

in a semi-infinite cylinder using an argument based upon differential inequalities

Repeated integration by parts and use of relations (4.5)-(4.8) together with definitions

(4.2) of the linear operator L and (4.3) of the generalised normal derivative, yields an

equivalent representation for (5.2). We have

VΩn
(u(n), u(n+1)) =

∫ t

0

∫
Γ

w
∂u(n+1)

∂n
dSdη −

∫ t

0

∫
Ωn(η)

u(n)L(u(n+1)) dxdη

+
1

2

∫
Ωn(t)

u(n)u(n+1) dx

= VΩn+1
(u(n+1), u(n+1))− 1

2

∫
Ωn(t)

u(n)u(n+1) dx

+

∫ t

0

∫
Ωn(η)

L
(
u(n)

)
u(n+1) dxdη. (5.4)

We examine the last term on the right of (5.4). Let Qn(t) = Ωn × [0, t) and for

differentiable functions φ, ψ set

[φ, ψ]Qn(t)
=

∫ t

0

∫
Ωn(η)

κijφ,iψ,j dxdη, (x, t) ∈ Qn(t). (5.5)
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Integration by parts yields∫ t

0

∫
Ωn(η)

(
κiju

(n)
,i

)
,j
u(n+1) dxdη

=

∫ t

0

∫
Γ(η)

u(n) ∂u
(n)

∂n
dSdη

+

∫ t

0

∫
Σn(η)

u(n+1) ∂u
(n)

∂n
dSdη −

[
u(n), u(n+1)

]
Qn(t)

= VΩn
(u(n), u(n)) +

∫ t

0

∫
Σn(η)

u(n+1) ∂u
(n)

∂n
dSdη

−
[
u(n), u(n+1)

]
Qn(t)

. (5.6)

Insertion of (5.6) into (5.4), after rearrangement gives

2VΩn
(u(n), u(n+1)) = VΩn

(u(n), u(n)) + VΩn+1
(u(n+1), u(n+1))

+

∫ t

0

∫
Σn(η)

u(n+1) ∂u
(n)

∂n
dSdη. (5.7)

The next step constructs an upper bound for VΩn
(u(n), u(n+1)) by means of Young’s,

or the arithmetic-geometric mean, inequality. The result substituted in (5.7) generates

the intermediate fundamental inequality

VΩn
(u(n), u(n)) + VΩn+1

(u(n+1), u(n+1))

≤ α1VΩn
(u(n), u(n)) + α−1

1 VΩn
(u(n+1), u(n+1))

−
∫ t

0

∫
Σn(η)

u(n+1) ∂u
(n)

∂n
dSdη, (5.8)

where α1 is an arbitrary positive constant to be chosen. A bound must now be obtained

for the surface integral appearing in the last term on the right of (5.8).

5.1. Subsidiary inequalities. Let n be fixed, and consider two subregions An, Bn that

satisfy An ⊂ Ωn, Bn ⊂ Ωn+1\Ωn, and let

Σn ⊂ ∂An, Σn ⊂ ∂Bn, (5.9)

∂An\ (Σn ∪ ΣAn
) �= 0, (5.10)

∂Bn\ (Σn ∪ ΣBn
) �= 0, (5.11)

where Σn = ∂Ωn ∩ Ωn+1 (see (2.7)), ΣAn
= ∂An ∩ Ωn, and ΣBn

= ∂Bn ∩ (Ωn+1\Ωn).

Schwarz’s inequality applied to the last term on the right of (5.8) yields

|
∫ t

0

∫
Σn(η)

u(n+1) ∂u
(n)

∂n
dSdη| ≤

[∫ t

0

∫
Σn(η)

u(n+1)u(n+1) dSdη

]1/2

×
[∫ t

0

∫
Σn(η)

(
∂u(n)

∂n

)2

dSdη

]1/2

. (5.12)
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To bound the first integral on the right we employ the Sobolev trace inequality (see,

for example, [1, 8, 9, 16, 18]):∫
Σ

v2 dS ≤
∫
∂D

v2 dS ≤ C(D)

∫
D

κijv,iv,j dx, (5.13)

where D, a bounded region of three dimensional Euclidean space R
3, has Lipschitz con-

tinuous boundary ∂D such that Σ ⊂ ∂D, S ⊂ ∂D are non-intersecting proper subsets

of ∂D that satisfy ∂D\ (Σ ∪ S) �= ∅. The function v ∈ W 1,2(D) vanishes on part of the

boundary:

v(x) = 0, x ∈ ∂D\(Σ ∪ S), (5.14)

and C(D) is a computable positive constant.

Inequality (5.13) is applied to the subregion Bn with Σ = Σn.

Now let v ∈ W 2,2(D) satisfy the boundary condition

v(x) = 0, x ∈ ∂D\S. (5.15)

The second integral on the right of (5.12) is treated by means of the inequality∫
Σ

(
∂v

∂n

)2

≤ a(D)

∫
D

κijv,iv,j dx+ b(D)

∫
D

(L(v))2 dx, (5.16)

where the operator L is defined in (4.2). and a(D), b(D) are positive constants. The

proof relies upon a Rellich identiy (see, for example, [2, 3, 13, 16]). We now apply (5.16)

to the subregion An with S = ΣAn
and Σ = Σn.

The respective embedding constants C(D), a(D), b(D) depend upon the region D

and therefore in the present particular case on Bn and An. Consequently, for each n, we

postulate that the choice of An and Bn can be always adjusted such that, for example,

a(An) = a(A1) = a, b(An) = b(A1) = b, and C(Bn) = C(B1) = C, where a, b, and C as

defined are positive constants. We obtain

|
∫ t

0

∫
Σn(η)

u(n+1) ∂u
(n)

∂n
dSdη|

≤ C1/2(α2 + α3)

2

∫ t

0

∫
Bn(η)

u
(n+1)
,i κiju

(n+1)
,j dxdη

+
aC1/2

2α2

∫ t

0

∫
An(η)

u
(n)
,i κiju

(n)
,j dxdη

+
b

2α3
C1/2

∫ t

0

∫
An(η)

(
u(n)
,η

)2

dxdη

≤ C1/2(α2 + α3)

2

∫ t

0

∫
Ωn+1(η)\Ωn(η)

u
(n+1)
,i κiju

(n+1)
,j dxdη

+
aC1/2

2α2

∫ t

0

∫
Ωn(η)

u
(n)
,i κiju

(n)
,j dxdη

+
b

2α3
C1/2

∫ t

0

∫
Ωn(η)

(
u(n)
,η

)2

dxdη, (5.17)



TRANSIENT HEAT CONDUCTION FOR GENERAL ELONGATED REGIONS 619

where Young’s inequality is employed and α2, α3 are arbitrary positive constants to be

chosen.

Consider the last integral on the right of (5.17). On noting (4.4), integrating by parts,

and employing (5.16) together with standard inequalities, we have∫ t

0

∫
Ωn(η)

(
u(n)
,η

)2

dxdη =

∫ t

0

∫
Ωn(η)

u(n)
,η L

(
u(n)

)
dxdη

≤ M1

⎡⎣(a(Ω)

∫ t

0

∫
Ωn(η)

u
(n)
,i κiju

(n)
,j dxdη

)1/2

+

(
b(Ω)

∫ t

0

∫
Ωn(η)

(
u(n)
,η

)2

dxdη

)1/2
⎤⎦ ,

where Ω ⊂ Ω1, fixed for all n, is chosen appropriately.

Let α4 denote an arbitrary positive constant. Young’s inequality applied to the last

expression leads to∫ t

0

∫
Ωn(η)

(
u(n)
,η

)2

dxdη ≤ M2
1 (α4 + b(Ω)) +

a(Ω)

α4

∫ t

0

∫
Ωn(η)

u
(n)
,i κiju

(n)
,j dxdη. (5.18)

Substitution of (5.18) in (5.17) after rearrangement gives

|
∫ t

0

∫
Σn(η)

u(n+1) ∂u
(n)

∂n
dSdη|

≤ C1/2

2
(α2 + α3)

∫ t

0

∫
Ωn+1(η)\Ωn(η)

u
(n+1)
,i κiju

(n+1)
,j dxdη

+

[
C1/2a

2α2
+

C1/2a(Ω)b

2α3α4

] ∫ t

0

∫
Ωn(η)

u
(n)
,i κiju

(n)
,j dxdη

+M2
1 (α4 + b(Ω))

C1/2b

2α3
. (5.19)

5.2. Fundamental inequality (continued). On returning to (5.8) and using (5.19) to

eliminate the surface integral, we obtain

1

α1
VΩn+1\Ωn

(
u(n+1), u(n+1)

)
+

(
1− 1

α1

)
VΩn+1

(
u(n+1), u(n+1)

)
−C1/2(α2 + α3)

2

∫ t

0

∫
Ωn+1(η)\Ωn(η)

u
(n+1)
,i κiju

(n+1)
,j dxdη

≤
[
α1 − 1 +

1

2

{
aC1/2

α2
+

bC1/2a(Ω)

α3α4

}]
VΩn

(
u(n), u(n)

)
+M2

1 (α4 + b(Ω))

(
bC1/2

2α3

)
. (5.20)

Now set

α1 = 2, α2 = α3 =
1

4C1/2
, (5.21)
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so that (5.20) becomes

1

2
VΩn+1\Ωn

(
u(n+1), u(n+1)

)
+

1

2
VΩn+1

(
u(n+1), u(n+1)

)
−1

4

∫ t

0

∫
Ωn+1(η)\Ωn(η)

u
(n+1)
,i κiju

(n+1)
,j dxdη

≤ q

2
VΩn

(
u(n), u(n)

)
+

Q

2
, (5.22)

where

q = 2
[
1 + 2C

{
a+ ba(Ω)α−1

4

}]
, (5.23)

Q = 4bCM2
1 (α4 + b(Ω)) . (5.24)

On appealing to definition (5.2), we may finally write (5.22) as

1

2
VΩn+1\Ωn

(
u(n+1), u(n+1)

)
+ VΩn+1

(
u(n+1), u(n+1)

)
≤ qVΩn

(
u(n), u(n)

)
+Q, (5.25)

which is the fundamental inequality required subsequently.

6. Monotone sequence. We construct a monotone sequence from inequalities (5.25).

Choose α4 so that Q = q > 1. That is, set

α4 =
H +

√
(H2 + 4IJ)

2J
, (6.1)

where

H = (1 + 2aC)− 2bCb(Ω)M2
1 , I = 2bCa(Ω), J = 2bCM2

1 ,

Q = q =
[
(1 + 2aC) + 2bCb(Ω)M2

1 +
√
(H2 + 4IJ)

]
. (6.2)

Recall that both q and Q are independent of n.

With this choice of arbitrary constants, inequality (5.25) becomes

1

2
VΩn+1\Ωn

(u(n+1), u(n+1)) + VΩn+1
(u(n+1), u(n+1)) ≤ q

[
VΩn

(u(n), u(n)) + 1
]
. (6.3)

For the moment, the positive-definite first term on the left in (6.3) is discarded, and

by recursion, the resulting inequality leads to the sequence

VΩn+1
(u(n+1), u(n+1)) ≤ q

(
VΩn

(u(n), u(n)) + 1
)

(6.4)

= q
(qr − 1)

(q − 1)
+ qrVΩn+1−r

, r = 1, 2 . . . n, (6.5)

where here and subsequently arguments of the respective energies are omitted.

The sequence may be compactly represented on setting

an+1
r = q

(qr − 1)

(q − 1)
+ qrVΩn+1−r

, r = 0, 1, 2 . . . n, (6.6)

to obtain

0 ≤ an+1
r ≤ an+1

s , 0 ≤ r < s ≤ n, n = 0, 1, 2, . . . (6.7)
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Let M3 be a specified positive (bounded) constant and suppose for n = 0, 1, 2, . . . that

r lies in the range where

0 ≤ an+1
r ≤ M3. (6.8)

The lower bound is implied by the positive-definite hypothesis. Upon recalling assump-

tion (5.3), we have also the bound

an+1
r q

(
qr − 1

q − 1

)
+ qrVn+1−r ≤ q

(
qr − 1

q − 1

)
+ qrM2. (6.9)

Condition (6.8) is consistent with inequality (6.9) provided M2 and M3 are selected to

satisfy

q

(
qr − 1

q − 1

)
+ qrM2 ≤ M3.

Rearrangement leads to

r ≤ ln

(
M3 +

q
q−1

M2 +
q

q−1

)
[ln q]−1. (6.10)

Let {x} denote the greatest integer that does not exceed x. Define r0 by

r0 =

{
ln

(
M3 +

q
q−1

M2 +
q

q−1

)
[ln q]−1

}
. (6.11)

A subsequence, again denoted by an+1
r , now may be extracted from (6.7) which for

ε > 0 and sufficiently large n0, satisfies the condition

|an+k+1
s − an+1

r | ≤ ε, n ≥ n0, (6.12)

for all k ≥ 0. Here, s, r lie in the interval [0, r0], and r0 is given by (6.11). Precise

values of r, s are dependent on n and k and together with the particular case s = r = 0

require a slightly different discussion. By the Bolzano-Weierstrass theorem, as s → ∞
the subsequence converges to a limit ã ≥ 0 such that

|ã− an+k+1
s | ≤ ε, n ≥ n0, k ≥ 0, (6.13)

or

ã− ε ≤ an+k+1
s ≤ ã+ ε, n ≥ n0, k ≥ 0. (6.14)

We revert to (6.6) to express these bounds in terms of the energies. Subject to the

above stated conditions on r, s, and r0, we have

ã− ε+
q

(q − 1)
(1− qs) ≤ qsVΩn+k+1−s

≤ ã+ ε+
q

(q − 1)
(1− qs), (6.15)

which is the basis for the derivation of Saint-Venant’s principle.

7. Saint-Venant’s principle. The necessary preliminary components have now

been assembled for the proof of Zanaboni’s version of Saint-Venant’s principle which

is stated in the following theorem.

Theorem 7.1. The system of parabolic initial boundary value problems (4.5)-(4.8) for

transient heat conduction subject to the boundedness conditions (5.3) and (4.4) possess

solutions which when measured by the energy function (5.2) tend to zero in the accretion

regions D
(n+1)
0 = Ωn+1\Ωn as n → ∞.
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Proof. Provided n ≥ n0, inequalities (6.15) hold both when k = 0 and k > 0. Each

possibility corresponds, say, to the terms an+1
r and an+k+1

s in the convergent subsequence,

and to the respective regions Ωn+1−r and Ωn+k+1−s, where 0 ≤ s, r ≤ r0, and r0 is

specified by (6.11). In what follows, it is assumed without loss that k > 0. The regions

Ωn belonging to the original sequence may now be recalibrated by considering a new

region composed of (N + 1) accretions chosen such that

ΩN+1 = Ωn+k+1−s, (7.1)

ΩN = Ωn+1−r, (7.2)

where

s− r < k. (7.3)

The difference between r and s is at most r0, and consequently, condition (7.3) is satisfied

for sufficiently large k. At this stage, the ordering of r and s is not assumed, but later

the mutually exclusive cases s ≤ r − 1, r ≤ s − 1, r = s, which exhaust all choices, are

separately treated.

According to (2.1), condition (7.3) implies

ΩN = Ωn+1−r ⊂ Ωn+k+1−s = ΩN+1. (7.4)

The thermal energy is uniquely determined in each isolated region and in consequence

we have the relations

VΩN+1

(
u(N+1), u(N+1)

)
= VΩn+k+1−s

(
u(n+1+k−s), u(n+1+k−s)

)
, (7.5)

VΩN

(
u(N), u(N)

)
= VΩn+1−r

(
u(n+1−r), u(n+1−r)

)
. (7.6)

The procedure that established the basic inequality (5.25) may be applied to accretions

DN+1
i , defined in (2.2) and (2.3), and leads to

1

2
VDN+1

0

(
u(N+1), u(N+1)

)
≤ q

[
VΩN

(
u(N), u(N)

)
+ 1

]
−VΩN+1

(
u(N+1), u(N+1)

)
, (7.7)

where we recall that DN+1
0 = ΩN+1\ΩN .

We now assume s − r ≤ −1 and let t > 0 satisfy s ≤ t ≤ r − 1. For convenience, we

again omit arguments of functions, and multiply inequality (7.7) by qt and use inequalities

(6.15) to obtain

qt

2
VDN+1

0
≤ qt+1(VΩN

+ 1)− qtVΩN+1
(7.8)

≤ qrVΩn+1−r
+ qt+1 − qsVΩn+k+1−s

, s ≤ t ≤ r − 1

= 2ε+
q

(q − 1)

[
1− qr + qt+1 − qt − 1 + qs

]
(7.9)

≤ 2ε, (7.10)

where the square bracket in (7.9) is non-positive since 1 < qs ≤ qt, qt+1 ≤ qr by the

assumed inequalities s ≤ t ≤ r − 1.
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But then (7.10) immediately gives

VDN+1
0

≤ 4q−tε ≤ 4ε, (7.11)

since t ≤ r ≤ r0, and q > 1. Inequality (7.11) for r > s represents the desired result for

Saint-Venant’s principle as formulated by Zanaboni.

To deal with the case s > r, select s1 ≥ 0 such that

ΩN+1 = Ωn+1−r = Ωn+k+1−s1 ,

ΩN = Ωn+k+1−s ⊂ Ωn+k+1−s1 = ΩN+1,

which are valid subject to

s1 − r = k, (7.12)

s1 < s. (7.13)

Respective terms in the basic inequality (7.8), but with t now satisfying r ≤ t ≤ s−1,

may be treated as follows. Bounds (6.15) are again used to obtain:

qtVΩN+1
= qtVΩn+1−r

≥ ã− ε+
q

(q − 1)
(1− qr), t ≥ r

and

q1+tVΩN
≤ qsVΩn+k+1−s, t ≤ (s− 1)

≤ ã+ ε+
q

(q − 1)
(1− qs).

As indicated, these operations require

r ≤ t ≤ (s− 1) ≤ (r0 − 1), (7.14)

which implies

(r + 1) ≤ s ≤ r0, (7.15)

and shows that s �= r.

Substitution in (7.8) yields

qt

2
VDN+1

0
≤ ã+ ε+

q

(q − 1)
(1− qs) + q(1+t) − ã+ ε− q

(q − 1)
(1− qr)

≤ 2ε, (7.16)

by virtue of relations (7.14). Zanaboni’s version of Saint-Venant’s principle is established

for r < s.

It remains to consider the case when r = s in the convergent subsequence; that is,

when

|an+k+1
r − an+1

r | ≤ ε, n ≥ n0, (7.17)

and inequalities (6.14) and (6.15) are satisfied for s = r. Set

ΩN+1 = Ωn+k+1−r, (7.18)

ΩN = Ωn−r = Ωn+1−(r+1). (7.19)
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It follows from (2.1) that

ΩN ⊂ ΩN+1

provided

(r − k) < (r + 1)

which is always valid.

The choice of regions implies

VΩN+1
= VΩn+k+1−r

,

VΩN
= VΩn−r

.

Consider inequality (7.8) with t = r and use (6.15) repeatedly to derive the following

inequalities:

qr

2
VDN+1

0
≤

[
q(1+r)VΩn+1−1−r

+ q(1+r) − qrVΩn+k+1−r

]
≤

[
ã+ ε+

q

(q − 1)
(1− q(1+r)) + q(1+r) − ã+ ε− q

(q − 1)
(1− qr)

]
= 2ε. (7.20)

But 0 ≤ r ≤ r0 < ∞, and consequently Saint-Venant’s principle is proved when r = s.

The special case r = s = 0, which may be included in the argument leading to (7.20),

presents no difficulty in the derivation of a Saint-Venant principle. In this respect, the

constant M3 appearing in (6.8) may be chosen arbitrarily large or small. A sufficiently

small M3 requires, from (6.11),that r0 = 0, which as just demonstrated may be included

in the proof. �

8. Concluding remarks. Zanaboni’s version of Saint-Venant’s principle states that

in an elongated linear elastic body in the absence of source terms and regardless of the

body’s shape the strain energy tends to zero in regions increasingly remote from the load

surface. This paper extends the result to transient heat conduction subject to bounded

thermal energies and a bounded time derivative of the temperature prescribed over the

common surface Γ. An advantage of Zanaboni’s procedure is its applicability to bodies

of general geometry. Such generality, however, is also a weakness. In constrast to the

approach based upon, for example, differential inequalities for cylindrical bodies, it is

not yet possible to derive precise decay estimates. Nevertheless, the general character

of conclusions derived using the Zanaboni argument for the spatial, rather than the

temporal, distribution of thermal energy has obvious implications for issues such as

domain decomposition in the design of computer programs.

It is well known that the mathematical model adopted here for transient heat con-

duciton admits an infinite speed of heat propagation. Implications of this property are

beyond the intended scope of the present study. Reconciliation, however, is apparently

needed since we have shown that the space-time integral of the thermal energy taken over

sufficiently remote regions remains small irrespective of time. It would also be of related

interest to explore, either by the present or some other method, whether Zanaboni’s ver-

sion of Saint-Venant’s principle is valid for the Green-Naghdi [6, 7], Maxwell-Cattaneo

[4, 5], or similar hyperbolic theories that admit a finite speed of heat propagation.
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A further extension of the method to hyperbolic systems, including the wave equation,

awaits investigation. By contrast, the treatment of external regions, the half-space, and

cone-like regions appears amenable to a direct extension of present methods.
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