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Abstract. This paper is devoted to the modeling of the photoacoustic effect generated

by the electromagnetic heating of metallic nanoparticles embedded in a biological tissue.

We first derive an asymptotic model for the plasmonic resonances and the electromagnetic

fields. We then describe the acoustic generation created by the electromagnetic heating

of the nanoparticle. Precisely, we derive the model equations that describe the coupling

between the temperature rise in the medium and the acoustic wave generation. We

obtain a direct relation between the acoustic waves and the electromagnetic external

sources. Finally, we solve the multiwave inverse problem that consists in the recovery of

the electric permittivity of the biological tissue from the measurements of the generated

acoustic waves on the boundary of the sample.
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1. The photoacoustic model and main results. Photoacoustic imaging [4,5,18,

22,25,26,35,37,55,58] is a recent hybrid imaging modality that couples electromagnetic

waves with acoustic waves to achieve high-resolution imaging of optical properties of

heterogeneous media such as biological tissues. Our objective in this paper is to derive

a realistic complete mathematical model for the photoacoustic generation by a single

nanoparticle embedded in a biological tissue. We introduce the mathematical framework

and give the main result in the first section. In the second section we describe the

mechanism of enhancement of light through the optical scattering properties of metallic

nanoparticles. The third section is devoted to the thermal modeling of the part of the

electromagnetic energy converted into heat. We precisely derive a theoretical model

for the generation of acoustic waves by the thermal expansion of the tissue around the

metallic nanoparticles. The inverse photoacoustic problem is solved asymptotically in

section 4. We finally give useful technical results in the appendix.

We now give a mathematical framework for the whole photoacoustic effect. Let Ω

be a bounded C2 domain in R
2. The outward unit normal at x to ∂Ω is denoted by

νΩ(x). The domain Ω is referred to as the biological sample that we aim to image by

the non-invasive photoacoustic modality. Assume that Ω contains a single nanoparticule,

of the form Bα := z� + αB, where B is a bounded, C2 smooth domain containing the

origin, α > 0 is a small constant that represents the size of the nanoparticle, and z� is

the position of the nanoparticle. The first step in the photoacoustic imaging system is to

illuminate the sample by an electromagnetic wave produced by a laser source. The time

dependent, linear Maxwell’s equations take the form

∇×E =−μ0
∂

∂t
H,

∇×H = ε
∂

∂t
E,

where E and H are the total electric field and the total magnetic field, respectively. The

coefficients ε and μ are the electric permittivity and magnetic permeability of the sample.

The magnetic permeability is assumed to be a constant equal to μ0, the permeability of

the free space, while the electric permittivity is given by

ε(x) =

{
εs(x) for x ∈ R2 \Bα,

εm for x ∈ Bα,
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where εm is the permittivity of the metal that will be specified later, and εs(x) is the

permittivity of the sample that is assumed of class C2 and is a constant equal to ε0 > 0,

the permittivity of the free space, outside Ω. We assume throughout that 0 < c0 <

�(εs(z�)) < |�(εm)| for all x ∈ Ω, �(εs(x)) belongs to C2
0 (Ω) and satisfies �(εs(z�)) > c0.

The imaginary part of the electric permittivity �(εs(x)), is related to the absorption of

the electromagnetic energy, and provides a good description of the state of the biological

tissue. Our objective in this paper is to recover this parameter around the nanoparticles.

We assume that during the illumination of the sample a part of the electromagnetic

energy is dissipated by absorption inside the biological tissue and inside the nanoparticle.

The absorption of the electromagnetic energy by the biological tissue is transformed into

heat and leads through the thermo-elastic expansion of the tissue to the generation

of an acoustic pressure p(x, t) that propagates to the detectors on the boundary ∂Ω.

The measurements of p(x, t) on the boundary allow the reconstruction of the absorption

and diffusion coefficients in the conventional pulsed photoacoustic imaging system. In

practice, it has been observed in various experiments that the imaging depth, i.e. the

maximal depth of the sample at which features can be resolved at expected resolution, is

still fairly limited, usually on the order of millimeters. This is mainly due to the limitation

on the penetration ability of the electromagnetic waves in the tissue: optical signals are

attenuated significantly by absorption and scattering. In [24], the authors showed that

the resolution is proportional to the magnitude of the laser fluence in the sample, and

recently in [54] the mechanism of depth resolution was mathematically investigated.

Metallic nanoparticles are very attractive as photoacoustic contrast agents because of

their large capacity to absorb light and convert it to heat and their spectral selectivity.

When they are illuminated at their plasmonic resonances their absorption of light is

amplified and their temperature increases significantly leading to various phenomena

including heating the surrounding media. For example, in Hyperthermia therapy for

cancer treatments one seeks to destroy tumors through heating metallic nanoparticles

[52]. In the context of photoacoustic imaging the heat of the surrounding biological

tissue will generate a strong acoustic pressure wave p(x, t) that can also be detected on the

boundary ∂Ω. The principal idea for the use of metallic nanoparticles in photoacoustic

imaging is that one can insert them at any position inside the sample and obtain strong

acoustic sources inside the sample. This will overcome the problem of the limitation

in the penetration resolution depth of the conventional photoacoustic imaging modality

based on the illumination of only the biological tissue. There are already several related

results in the physicists community [23, 53].

Our objective in this paper is to study the inverse problem to recover �(εs(x)) at z�
from measurements of the pressure p(x, t) on the boundary ∂Ω.

Assuming that |∇H(z�)| �= 0, B is ball, and that z� is known we derive the follow-

ing global stability estimate. It shows how the errors in measurements can effect the

reconstruction of the electric permittivity at z�.

Theorem 1.1. Let τp > τΩ where τp = supx,y∈Ω |x− y|. Let pa(x, t) (resp., pb(x, t)) be

the acoustic pressure generated by an external electromagnetic source in a medium with

electric permittivity εs,a(x) (resp., εs,b(x)).
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Then, there exists a constant C > 0 that does not depend on α and the boundary

measurements such that

|�(εs,a(z�))− �(εs,b(z�))|

≤ C

(∥∥∥∥∂pa∂t
− ∂pb

∂t

∥∥∥∥
L2(∂Ω×(0,τp))

+ ‖∇pa −∇pb‖L2(∂Ω×(0,τp))

) 1
4

+O(α).

The proof of the theorem is given in section 4. It is based on asymptotic expansion

of the electromagnetic fields when α tends to zero. The coupling between the acoustic

and electromagnetic waves allows us to retrieve the inner asymptotic expansion of the

electromagnetic fields in a small neighborhood of z� (Theorem 4.1, and subsection 4.2.2).

Since α, the size of the nanoparticle is small, the stability estimate of Hölder type shows

that the reconstruction of �(εs(z�)) from measurements of the pressure p(x, t) on the

boundary ∂Ω is in fact a well-posed inverse problem. In subsection 2.1 we derived

the asymptotic expansion of the plasmonic resonances of the system nanoparticle and

biological tissue. Later on in subsection 4.2.2, we showed that choosing the incident wave

frequency close to the real part of a plasmonic resonance enhances the photoacoustic

signal measured on the boundary. Finally, the stability result can be easily extended to

cover the case where many well separated nanoparticles are embedded in the sample.

2. Electromagnetic excitation. The first syntheses of metallic small particles date

back to the fourth or fifth century B.C., where gold specimens were reported in China

and Egypt. Their optical properties were used for coloration of glass, ceramics, china,

and pottery (see [44] and the references therein).

It is now well known that the interesting diffractive properties of these particles are

linked to resonances phenomena. In fact, plasmon resonances may occur in metallic

particles if the dielectric permittivity inside the particle is negative and the wavelength

of the incident excitation is much larger than the dimension of the particle. For nanoscale

metallic particles, these resonances occur in the optical frequency range and they result

in an extremely large enhancement of the electromagnetic field near the boundary of

the particles. This phenomena has applications in many areas such as nanophotonics,

nanolithography, near field microscopy, and biosensors. The desired resonance frequencies

as well as the local fields enhancement can be achieved by controlling the geometry of

the metallic nanostructure.

From a mathematical point of view these resonance values are the complex eigen-

values of Maxwell’s equations that only occur when the dielectric permittivity of the

nanoparticles is negative and the size of the nanoparticles is less than the incident wave-

length. A formal asymptotic expansion in [42, 43] showed that if the ratio between the

incident wavelength and the size of the nanoparticle tends to zero the plasmonic res-

onances approch the eigenvalues of the Neumann-Poincaré operator or the variational

Poincaré operator [42, 43]. In [21], the authors have derived a rigorous justification of

the quasi-static approximation in harmonic frequency regime [42, 43]. It is well known

that the resonance phenomena occur only in transverse magnetic polarization ((TM)
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polarization). Here we consider the time harmonic regime in (TM) polarization, that is,

E = �(Eeiωt) and H = �(Heiωt), where E = (E(x1, x2), 0) and H = (0, 0, H(x1, x2)).

The total magnetic field can be decomposed into two parts H = Hi + Hs where Hi

and Hs are, respectively, the incident and scattered waves.

The homogeneous frequency-domain, linear Maxwell’s equations, in the transverse

magnetic polarization (TM) and in absence of internal sources, take the form

∇ ·
(
1

ε
∇H

)
+ ω2μ0H = 0 in R

2 (2.1)

with the Sommerfeld radiation condition as |x| → +∞ [46]:

∂Hs

∂|x| − iω
√
ε0μ0Hs = O(

1√
|x|

). (2.2)

Recall that the electric permittivity is given by

ε(x) =

⎧⎨⎩
ε0 for x ∈ R2 \ Ω,
εs(x) for x ∈ Ω \Bα,

εm(ω) for x ∈ Bα,

where ε0 is the permittivity of the free space. The incident field Hi satisfies

ΔHi + ω2μ0ε0Hi = 0 in R
2.

The electric field E can be deduced directly from the magnetic field through the

relation

E(x) =

(
∂x2

H(x)

−∂x1
H(x)

)
. (2.3)

The metal that fills the nanoparticle is assumed to be real and its dielectric constant is

described by the Drude model:

εm(ω) = ε0

(
ε∞ − ω2

P

ω2 + iωΓ

)
, (2.4)

where ε∞ > 0, ωP > 0, and Γ > 0 are the metal parameters that are usually fitted

utilizing experiment data [44]. The dielectric constant εm depends on the frequency ω,

and so incident waves can cause a change in the metal behavior. Media having such a

property are termed dispersive media.

The Drude model considered here describes well the optical properties of many metals

within relatively wide frequency range. For example, the function εm(ω) with effective

parameters: ε∞ = 9.84 eV , ωP = 9.096 eV , Γ = 0.072 eV for gold, and ε∞ = 3.7 eV ,

ωP = 8.9 eV , Γ = 0.021 eV for silver reproduce quite well the experimental values of the

dielectric constant in the frequency range 0.8 eV to 4 eV (see, for instance, [32]).

2.1. Plasmonic resonances. When the frequency lies in the upper half complex space,

that is, �(ω) ≥ 0, the system (2.1) has a unique solution. The resolvent of the differential

operator (2.1) with condition (2.2) has a meromorphic continuation in the lower complex

plane.

The complex number ω is said to be a plasmonic resonant frequency of the nanoparticle

Bα if there exists a non-trivial solution H to the system (2.1)-(2.2) with zero incident

wave.
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It is known that the set of scattering resonances {ωj} of the above Helmholtz equation

in the absence of dispersion (εm does not depend on ω) is discrete and symmetric in

the complex plane about the imaginary axis. Further, it can be easily seen that all

the resonant frequencies {ωj} are in the lower half-space �ω < 0. They can be found

explicitly for a circular or ellipsoid shape and are connected in this case with the zeros of

certain Bessel functions. More elaborate results assert that for strictly convex shapes in

dimension three the resonant frequencies accumulate rapidly on the real axis as |�ω| →
∞ [51].

It has been shown in dimension one that the scattering resonances of a non-dispersive

medium satisfy [29, 48]

�(ω) ≥ C1e
−C2|�(ω)|2 ,

where the constants Ci, i = 1, 2 only depend on ε and the size of the domain.

The imaginary part of a resonance gives the decay rate of the associated resonant

states. Thus, resonances close to the real axis give information about long term behavior

of waves. In particular, since the work of Lax-Phillips [38] and Vainberg [57], resonance

free regions near the real axis have been used to understand decay of waves. Several works

in nano-optics have related the amplification and enhancement of light to the behavior

of the imaginary part of the scattering resonances close to the real axis [14, 19, 20].

Like the non-dispersive case, the plasmonic resonances form a set of discrete and iso-

lated complex values (ωj(α))j . In [21] the authors have derived the asymptotic expansion

of the plasmonic resonant frequencies as α tends to zero and when the nanoparticle is

surrounded by a homogeneous medium with a constant electric permittivity. In the fol-

lowing paragraph we adapt their techniques to our problem and derive the first term in

the asymptotic expansion of the plasmonic resonances. We refer the reader to [3,8,11,16]

for recent and interesting mathematical results on plasmonic resonances for nanoparti-

cles.

Making the change of variables x = z� + αξ in the spectral problem (2.1), we get

∇ ·
(

1

ε̃α
∇H̃

)
+ α2ω2μ0H̃ = 0 in R

2, (2.5)

with the radiation condition

∂H̃

∂|ξ| − iαω
√
ε0μ0H̃ = O(

1√
|ξ|

) as |ξ| → +∞, (2.6)

where H̃(ξ) = H(z� + αξ), and ε̃α(ξ) = ε(z� + αξ) is given by

ε̃α(ξ) =

⎧⎨⎩
ε0 for ξ ∈ R2 \ Ωα,

εs(z
� + αξ) for ξ ∈ Ωα \B,

εm(ω) for ξ ∈ B.

Here Ωα denotes
{

x−z�

α ;x ∈ Ω
}
. It contains zero and tends to the whole space when

α approaches zero. Similarly, the piecewise smooth function ε̃α(ξ) converges in L∞
loc(R

2)
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to the piecewise constant function

ε̃(ξ) =

{
εs(z

�) for ξ ∈ R2 \B,

εm(ω) for ξ ∈ B.

In the quasi-static regime αω  ω  1, the above spectral problem formally converges

to the quasi-static spectral problem

∇ ·
(
1

ε̃
∇H̃0

)
= 0 in R

2, (2.7)

where the field H̃0(x) belongs to W 1,−1
0 (R2), where

W 1,−1
0 (R2) :=

{
u ∈ H1

loc(R
2) : u/(1 + |ξ|2)

1
2 ln(1 + |ξ|2) ∈ L2(R2);∇u ∈ L2(R2); lim

|ξ|→+∞
u = 0

}
.

Next, we define the integral operator T0 : W 1,−1
0 (R2) → W 1,−1

0 (R2) byˆ
R2

∇T0w∇vdξ =

ˆ
B

∇w∇vdξ for all v ∈ W 1,−1
0 (R2).

We introduce the single layer vector space

H := {u ∈ W 1,−1
0 (R2) : Δu = 0 in B ∪ R

2 \B; u|+ = u|− on ∂B}.

We deduce from [21] that the restriction of T0 to H is a self-adjoint operator of Fred-

holm type with index zero. In fact, 1
2I − T0 is a compact operator.

Let us denote as
{
β±
j

}
j≥1

the eigenvalues of T0 : H → H, ordered in the following way:

0 = β−
1 ≤ β−

2 ≤ ... ≤ β+
∞ =

1

2
,

and

β+
∞ =

1

2
≤ ... ≤ β+

2 ≤ β+
1 < 1,

and satisfies limj→+∞ β±
j = β±

∞ = 1
2 . We deduce immediately from the min-max prin-

ciple for the compact, self-adjoint operator 1
2I − T0 the following characterization of the

spectrum of T0 [21].

Proposition 2.1. Let
{
w±

j

}
j≥1

be the set of corresponding eigenfunctions of the oper-

ator T0, associated to the eigenvalues
{
β±
j

}
j≥1

. The following equalities hold:

β−
j = min

u∈H

u⊥w
−
1 ,...,w

−
j−1

ˆ
D

|∇u|2 dx
ˆ
Ω

|∇u|2 dx
= max

Fj⊂H

dim(Fj )=j−1

min
u∈F⊥

j

ˆ
D

|∇u|2 dx
ˆ
Ω

|∇u|2 dx

and

β+
j = max

u∈H

u⊥w
+
1 ,...,w

+
j−1

ˆ
D

|∇u|2 dx
ˆ
Ω

|∇u|2 dx
= min

Fj⊂H

dim(Fj)=j−1

max
u∈F⊥

j

ˆ
D

|∇u|2 dx
ˆ
Ω

|∇u|2 dx

for all j ≥ 1.
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We define the quasi-static resonances
(
ω±
j (0)

)
j≥1

of the spectral problem (2.7) the

complex roots of the following dispersion equations:

εm(ω)

εs(z�)
= k±j :=

β±
j

β±
j − 1

, 1 ≤ j ≤ ∞. (2.8)

We first remark that since β±
j belong to [0, 1) the values on the right side of the

equality k±j are negative reals. Thus �(εm(ω)), the real part of the electric permittivity,

at the quasi-static plasmonic resonances
(
ω±
j (0)

)
j≥1

takes negative reals. This is exactly

what one would expect in such a situation, and the existence of the plasmonic resonances

cannot occur if the material inside the nanoparticle is a modest electric permittivity that

always has a strictly positive real part.

Lemma 2.1. The complex roots to the dispersion relation (2.8) are explicitly given by

−i
Γ

2
±

√
ω2
p

ε∞ − k±j εs(z
�)

− Γ2

4
, (2.9)

where
√
z is the complex square root function defined on C \ i(0,∞).

We note that the quantities kj and ε∞ − 4
ω2

P

Γ2 only depend, respectively, on the shape

of the particle and the nature of the metal that fills the particle. Based on this calcu-

lation we remark that the circular shape has only four quasi-static resonances given by

−iΓ2 ±
√

ω2
p

ε∞
− Γ2

4 , and −iΓ2 ±
√

ω2
p

ε∞+εs(z�) −
Γ2

4 . They satisfy, respectively, the dispersion

equation with k−1 = 0, and k±∞ = −1. We remark that only the resonances related to

k±∞ = −1 depend on the surrounding media electric permittivity εs(z
�) and may provide

later information on it. Finally, the eigenfunctions associated to k−1 = 0, are constant

on the boundary ∂B.

We follow the same steps as in the proof of Theorem 2.1 in [13, 14, 21] and prove the

following asymptotic result.

Proposition 2.2. Let ω(0) be a quasi-static resonance with multiplicity m. Then there

exists a constant α0 > 0 such that for 0 < α < α0 there exist m plasmonic resonances

(ωj(α))1≤j≤m satisfying the following asymptotic expansion as α → 0:

1

m

m∑
j=1

ωj(α) = ω(0) + o(1). (2.10)

Next, we derive the asymptotic expansion of the electromagnetic fields when the size

of the nanoparticle tends to zero.

2.2. Small volume expansion of the EM fields. Our strategy here is to use the tools

developed in [6,9] and the references therein to derive the leading terms in the asymptotic

expansion of electromagnetic fields when the volume of the nanoparticle tends to zero.

Since the frequency of the incident wave is real and thus far away from the complex

plasmonic resonances we expect that the remaining terms of the asymptotic expansion

stay uniformly bounded.
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Let H0 = Hi + H0s, be the total electric field in the absence of the nanoparticle. It

satisfies the system

∇ ·
(

1

εs
∇H0

)
+ ω2μ0H0 = 0 in R

2 (2.11)

with the Sommerfeld radiation condition as |x| → +∞:

∂H0s

∂|x| − iω
√
ε0μ0H0s = O(

1√
|x|

). (2.12)

Recall that in the quasi-static regime the scattering resonances are far away from the

real axis. Consequently, the system (2.11)-(2.12) above has a unique solution H for any

given real frequency ω. Hence the following Green function G(x, y) is well defined:

∇ ·
(

1

εs
∇G

)
+ ω2μ0G = δy(x) in R

2 (2.13)

with the Sommerfeld radiation condition as |x| → +∞:

∂G

∂|x| − iω
√
ε0μ0G = O(

1√
|x|

). (2.14)

A simple integration by parts in the system (2.11)-(2.12) yields

H(x) = H0(x) +

ˆ
Bα

(
1

εm
− 1

εs(x)

)
∇H(y)∇yG(x, y)dy, (2.15)

which leads to the following result.

Proposition 2.3. There exists a constant C > 0, independent of α and Hi such that

‖H(x)−H0(x)‖H1(Ω) ≤ Cα‖Hi‖H1(Ω).

This proposition shows that if ω is real, the field H0(x) is the first term in the asymp-

totic expansion ofH(x) when α tends to zero. However, the constant C in the proposition

depends on ε(x) and ω can be large. In fact, considering the results in Proposition 2.2

and Lemma 2.1 if the attenuation Γ tends to zero the plasmonic resonances will approach

the real axis and then the constant C may blow up. In such a situation one needs to

take into account further terms in the asymptotic expansion of H(x) when α tends to

zero in order to improve the approximation. Here we will derive formally the first and

second terms in the asymptotic expansion. In [9] a uniform asymptotic expansion of the

magnetic field is derived using the method of matched asymptotic expansions for α small

enough. Here we apply the same approach to obtain a formal asymptotic expansion of

the electromagnetic fields. We shall represent the field H(x) by two different expansions,

an inner expansion for x near z�, and an outer expansion for x far away from z�.

The outer expansion takes the form

H(x) = H0(x) + αH1(x) + α2H2(x) + · · · for |x− z�| � O(α), (2.16)

where H1, H2 satisfy the following Helmholtz equation:

∇ ·
(

1

εs
∇Hi

)
+ ω2μ0Hi = 0 in |x− z�| � O(α),
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with the Sommerfeld radiation condition as |x| → +∞:

∂Hi

∂|x| − iω
√
ε0μ0Hi = O(

1√
|x|

).

Introducing the microscale variable ξ = (x− z�)/α, then the inner expansion can be

written as

H(z� + αξ) = h0(ξ) + αh1(ξ) + α2 ln(α)h2(ξ) + · · · for |ξ| = O(1), (2.17)

where the functions h0, h1, h2 satisfy the following divergence form equations:

∇ ·
(
1

ε̃
∇h0

)
= 0 in R

2, (2.18)

∇ ·
(
1

ε̃
∇h1

)
+∇ · (η1(ξ)∇h0) = 0 in R

2, (2.19)

∇ ·
(
1

ε̃
∇h2

)
= 0 in R

2, (2.20)

where η1(ξ) and η2(ξ) are the coefficients of the inner expansion of 1
ε(z�+αξ) given by

1

ε(z� + αξ)
=

1

ε̃(ξ)
+ η1(ξ)α+ η2(ξ)α

2 + · · · (2.21)

with

η1(ξ) =

{
∇( 1

εs
)(z�)ξ in R

2 \B,

0 in B,

and

η2(ξ) =

{
∇2( 1

εs
)(z�) ξ

2

2 in R2 \B,

0 in B.

Obviously the inner and outer expansions are not valid everywhere and the systems of

equations satisfied by the functions Hi and hi are not complete. In order to determine

these functions uniquely, we need to equate the inner and the outer expansions in some

overlap domain within which the microscale variable ξ is large and x − z� is small. In

this domain the matching conditions are:

H0(y) + αH1(y) + α2H2(y) + · · · ∼ h0(ξ) + αh1(ξ) + α2 ln(α)h2(ξ) + · · · .

A change of variables in the Lippman-Schwinger integral representation formula (2.15)

yields

H(z� + αξ)

=H0(z
� + αξ) + α

ˆ
B

(
1

εm
− 1

εs(z� + αξ′)

)
∂ξk (H(z� + αξ′)) ∂xk

G(z� + αξ, z� + αξ′)dξ′.

(2.22)

An asymptotic expansion of the quantities above gives

H0(z
� + αξ) = H0(z

�) + ∂xi
H0(z

�)ξiα+ ∂2
xixj

H0(z
�)ξiξj

α2

2
+ o(α2),
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and

α∂ξkG(z� + αξ, z� + αξ) = εs(z
�)∂ξkΦ0(ξ, ξ

′) +
1

4π
∂xk

εs(z
�)α ln(α) + αΦ1(ξ, ξ

′) + o(α),

where Φ0(ξ, ξ
′) = 1

2π ln(|ξ−ξ′|) is the Green function of the Laplacian in the whole space,

and Φ1(ξ, ξ
′) is a weakly singular function (see Theorem 5.1 in Appendix).

Inserting now the inner expansion of H, and the above asymptotic expansion into

(2.22) we obtain

h0(ξ) = H0(z
�),

h1(ξ) = ∂xi
H0(z

�)ξi +

(
εs(z

�)

εm
− 1

) ˆ
B

∂ξkΦ0(ξ, ξ
′)∂ξkh1(ξ

′)dξ′,

and

h2(ξ) =

(
εs(z

�)

εm
− 1

) ˆ
B

∂ξkΦ0(ξ, ξ
′)∂ξkh2(ξ

′)dξ′

+
1

4π

(
1

εm
− 1

εs(z�)

)
∂xk

εs(z
�)

ˆ
B

∂ξkh1(ξ
′)dξ′.

Now we suppose that the functions h0, h1, and h2 are defined not just in the domain

B, but everywhere in R2. Considering the asymptotic expansions obtained from the

Lipmann-Schwinger equation and matching conditions, we obtain

h0(ξ) = H0(z
�), (2.23)

∇ ·
(
1

ε̃
∇h1(ξ)

)
= 0 in R

2, (2.24)

lim
ξ→+∞

(h1(ξ)− ∂xi
H0(z

�)ξi) = 0, (2.25)

and

∇ ·
(
1

ε̃
∇h2(ξ)

)
= 0 in R

2, (2.26)

lim
ξ→+∞

(
h2(ξ)−

1

4π

(
1

εm
− 1

εs(z�)

)
∂xk

εs(z
�)

ˆ
B

∂ξkh1(ξ
′)dξ′

)
= 0. (2.27)

Using a variational approach in the Hilbert space W 1,−1
0 (R2) one can prove that the

systems (2.24)- (2.25) and (2.26)- (2.27) have unique solutions. Precisely, it can be shown

that h1(ξ) satisfies the following volume integral equation:(
εm(ω)

εs(z�)− εm(ω)
I + T0

)
(h1(ξ)− ∂xi

H0(z
�)ξi) = ∂xi

H0(z
�)ξ̂i(ξ), (2.28)

where ξ̂i(ξ) ∈ W 1,−1
0 (R2) is the orthogonal projection of ξiχB(ξ) onto W 1,−1

0 (R2), which

can be defined as the unique solution to the systemˆ
R2

∇ξ̂i∇vdξ =

ˆ
B

∇ξi∇vdξ for all v ∈ W 1,−1
0 (R2). (2.29)

Since T0 is self-adjoint and εm(ω)
εs(z�)−εm(ω) has a non-zero imaginary component, the equa-

tion (2.28) has a unique solution.
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Similarly, a forward calculation yields(
εm(ω)

εs(z�)− εm(ω)
I + T0

) (
h2(ξ)−

1

4π

(
1

εm
− 1

εs(z�)

)
∂xk

εs(z
�)

ˆ
B

∂ξkh1(ξ
′)dξ′

)
= 0,

and, consequently,

h2(ξ) =
1

4π

(
1

εm
− 1

εs(z�)

)
∂xk

εs(z
�)

ˆ
B

∂ξkh1(ξ
′)dξ′, (2.30)

is indeed a constant function.

Now, we shall determine the outer expansion functions H1 and H2. To do so we again

consider the Lipmann-Schwinger equation

H(x) = H0(x) + α

ˆ
B

(
1

εm
− 1

εs(z� + αξ′)

)
∂ξk (H(z� + αξ′)) ∂xk

(G(x, z� + αξ′)) dξ′.

(2.31)

Using the inner expansion of H and the regularity of the Green function G we obtain

H1(x) = 0, (2.32)

H2(x) =

(
1

εm
− 1

εs(z�)

) ˆ
B

∂ξkh1(ξ
′)dξ′∂xk

G(x, z�). (2.33)

It is well known that the inner and outer expansions are not valid uniformly in x [9].

In order to obtain an asymptotic expansion of the fields as α tends to zero that is valid

uniformly in space variable, we merge the two expansions together. Thus, adding the

outer and inner expansions and subtracting out the common part, we formally find the

following uniform expansions: for all x ∈ Ω:

H(x) = H0(x) + αH1(
x− z�

α
) + α2 ln(α)H2(

x− z�

α
) + α2H2(x) +O(α2 ln(α)), (2.34)

where

H1(ξ) = h1(ξ)− ξi∂xi
H0(z

�) +

(
εs(z

�)

εm
− 1

)
1

π

ˆ
B

∂ξih1(ξ
′)dξ′

ξi
|ξ|2 ,

H2(ξ) =
1

4π

(
1

εm
− 1

εs(z�)

)
∂xk

εs(z
�)

ˆ
B

∂ξkh1(ξ
′)dξ′.

Following the steps of the proof of Theorem 2.1 in [9] one can obtain the following

uniform asymptotic expansion.

Theorem 2.1. For δ ∈ (0, 1), there exists a constant C > 0, independent of α and Hi

such that

‖H(x)−H0(x)−αH1(
x− z�

α
)− α2 ln(α)H2(

x− z�

α
)−α2H2(x)‖H1(Ω) ≤ Cα2‖Hi‖H1(Ω).

The approximation can be improved by considering the inner expansion term of order

α2 and computing the limit of Φ1(ξ, ξ
′) as ξ tends to +∞. Opposite of the first impression,

the term α2H2(x) on the right hand side is necessary to cancel out the singularity ofH1(ξ)

when ξ tends to zero. Finally, if ∂xk
εs(z

�) = 0 one can recover the results of [9] by adding

the order α2 inner term.
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2.3. The radial case. Here we assume that Ω and B are the unit disc, and z� = 0. We

also assume that the electric permittivity ε is piecewise constant.

Let (r, θ) be the polar coordinates in R2, let m be a fixed integer larger than 1, and

consider

Hi(r, θ) = Jm(
ω

c0
r)eimθ

to be the magnetic incident field, where Jm(ξ) is the Bessel function of the first kind of

order m, and c0 = 1√
ε0μ0

is the speed of light in the free space.

Then, the total magnetic field takes the form H(r, θ) = hα(r)e
imθ, with

h(r) =

⎧⎪⎨⎪⎩
κ1Hm( ω

c0
r) + Jm( ω

c0
r) for r ≥ 1,

κ2Hm( ω
cs
r) + κ3Jm( ω

cs
r) for α ≤ r ≤ 1,

κ4Jm( ω
cm

r) for r ≤ α,

where cs = 1√
εsμ0

, and cm = 1√
εmμ0

are the speed of light in the dielectric coating and

in the metallic nanoparticle, respectively. Hm(ξ) is the Hankel function of the first kind

of order m.

The transmission conditions for r = 1 and r = α give the following system:⎛⎜⎜⎜⎝
Hm( ω

c0
) −Hm( ω

cs
) −Jm( ω

cs
) 0

c0
cs
H ′

m( ω
c0
) −H ′

m( ω
cs
) −J ′

m( ω
cs
) 0

0 Hm( ω
cs
α) Jm( ω

cs
α) −Jm( ω

cm
α)

0 cs
cm

H ′
m( ω

cs
α) cs

cm
J ′
m( ω

cs
α) −J ′

m( ω
cm

α)

⎞⎟⎟⎟⎠−→κ =

⎛⎜⎜⎜⎝
−Jm( ω

c0
)

−J ′
m( ω

c0
)

0

0

⎞⎟⎟⎟⎠ .

The plasmonic resonances, in this case, are exactly the zeros of the determinant dα(ω),

of the scattering matrix. An asymptotic expansion of the latter when α tends to zero

gives

dα(ω) =
d0(ω)

α
+ o(

1

α
),

where

d0(ω) :=

(
−Hm(

ω

c0
)J ′

m(
ω

cs
) +

cs
c0
H ′

m(
ω

c0
)Jm(

ω

cs
)

)
cms
πω

(c2m + c2s)
1

cm+1
m

.

Hence a limiting value ω(0) of a sequence of plasmonic resonances has to be finite and

satisfy the dispersion equation d0(ω(0)) = 0. We remark that the complex roots of the

function

−Hm(
ω

c0
)J ′

m(
ω

cs
) +

c0
cs
H ′

m(
ω

c0
)Jm(

ω

cs
)

are exactly the scattering resonances of the domain Ω in the absence of the nanoparticle.

If we drop the assumption that ω is small, and if the material that fills the nanoparticle

is non-dispersive, we obtain the well-known convergence of the scattering resonances to

the non-perturbed ones (see, for instance, [6, 9]).

A careful analysis of the zeros of d0(ω) in the quasi-static regime leads to εm(ω(0)) =

−εs or εm(ω(0)) = 0, which correspond exactly to the plasmonic values of the circular

shape nanoparticle β±
∞ = 1

2 and β−
1 = 0 (see, for instance, (2.8)).
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In the case wherem is equal to one the determinant dα(ω) has the following asymptotic

expansion dα(ω) = d0(ω) ln(α)+o(ln(α)) as α tends to zero. Using the Rouché Theorem

one can determine the complete asymptotic expansion of the plasmonic resonances in the

case of a circular shape.

3. Photoacoustic effect. In this section we consider a metallic nanoparticle in a

liquid medium and we want to describe the photoacoustic generation created by the elec-

tromagnetic heating of the nanoparticle. We derive the model equations that describe the

coupling between the temperature rise in the medium and the acoustic wave generation.

3.1. Acoustic sources. We write the fundamental equations of acoustics as explained

in [53], i.e., the equation of continuity, the Euler equation, and the continuity equation

for heat flow
∂ρ

∂t
= −ρ0div(v), (3.1)

ρ0
∂v

∂t
= −∇p, (3.2)

ρ0T
∂s

∂t
= div(κ∇T ) + Pv, (3.3)

where ρ is the mass density, p(r, t) is the acoustic pressure, v(r, t) is the acoustic displace-

ment velocity, s(r, t) is the specific entropy, T (r, t) is the temperature, and Pv is the heat

source. The change of density is assumed small (ρ−ρ0

ρ0
 1). The thermal conduction κ

is given by

κ(x) =

{
κs(x) for x ∈ Ω \Bα,

κ0 for x ∈ Bα,

where κs(x) > 0 is the thermal conduction of the liquid and κ0 > 0 is the thermal

conduction of the metal that fills the nanoparticle, and verifies κ0 � κs.

We can write the two equations of state giving the change of density δρ and the change

of entropy δs in terms of δp and δT [45]

δρ =
γ

c2s
δp− ρ0βδT, (3.4)

δs =
cp
T
(δT − γ − 1

ρ0βc2s
δp), (3.5)

where cp = T
(
∂s
∂T

)
p
is the specific heat capacity at constant pressure, cv = T

(
∂s
∂T

)
ρ
is

the specific heat capacity at constant volume, γ =
cp
cv
, β = − 1

ρ

(
∂ρ
∂T

)
p
is the thermal

expansion coefficient, and cs is the isentropic sound velocity.

We deduce from equations (3.4) and (3.5) the two following equations:

∂ρ

∂t
=

γ

c2s

∂p

∂t
− ρ0β

∂T

∂t
, (3.6)

∂s

∂t
=

cp
T
(
∂T

∂t
− γ − 1

ρ0βc2s

∂p

∂t
). (3.7)
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We can make the assumption for liquids that γ = 1. With this assumption and

combining equations (3.3) and (3.7), we obtain the following equation for the temperature

field T :

ρ0cp
∂T

∂t
= div(κ∇T ) + Pv. (3.8)

We now use equations (3.1) and (3.2) to get ∂2ρ
∂t2 − Δp = 0. We can transform this

equation thanks to equation (3.4) and we obtain:

γ

c2s

∂2p

∂t2
−Δp = ρ0

∂

∂t

(
β
∂T

∂t

)
. (3.9)

With the assumption that γ = 1 and that β = β0, we finally have the following system

of coupled equations for the generation of photoacoustic waves in a liquid medium:

ρ0cp
∂T

∂t
= div(κ∇T ) + Pv, (3.10)

1

c2s

∂2p

∂t2
−Δp = ρ0β0

∂2T

∂t
. (3.11)

3.2. Electromagnetic sources. The source term Pv in equation (3.3) is the energy pro-

duced by electromagnetic heating. It can be written as follows [52]:

Pv = Qgen +Qmet, (3.12)

where Qgen is the volumetric power density of the electromagnetic source, and Qmet is

the metabolic heat generated by biological tissues. We consider here that Qmet = 0.

The electromagnetic coefficients of the medium are the complex electric permittivity

εs, the magnetic permeability μ0. Since the electromagnetic wave is time pulsed and

because of the difference of time scales between the acoustic and electromagnetic waves,

the volumetric power density is described by the time averaging of the real part of the

divergence of the Poynting vector S = E ×H times the Dirac function at zero. On the

other hand the divergence of S is given by

−∇ · S = iωε|E|2 + iωμ0|H|2. (3.13)

By taking the real part and time averaging of the divergence of the Poynting vector we

finally have

Qgen = ω�(ε)〈|E|2〉δ0(t) = ω�(ε)|E|2δ0(t), (3.14)

where the time averaging is defined by 〈f〉 := limτ→+∞
´ τ

0
f(t)dt, and δ0 is the Dirac

function at 0.

We can finally write the following system of coupled equations that describes the

photoacoustic generation by the electromagnetic heating of a metallic nanoparticle

ρ0cp
∂T

∂t
= div(κ∇T ) + ω�(ε)|E|2δ0(t), (3.15)

1

c2s

∂2p

∂t2
−Δp = ρ0β0

∂2T

∂t
, (3.16)



688 FAOUZI TRIKI AND MARGAUX VAUTHRIN

with the initial conditions at t = 0:

T = p =
∂p

∂t
= 0. (3.17)

Following the same analysis as in [10] one can show that the temperature T approaches

T0 as α tends to zero, where T0 is the solution to

ρ0cp
∂T0

∂t
= div(κs∇T0) + ω�(ε)|E|2δ0(t),

with initial boundary condition T0 = 0 at t = 0, and lim|x|→+∞ T0(x) = 0. Here we did

not consider the first and second terms in the small volume asymptotic expansion because

the thermal conduction κ is frequency independent, and hence the limiting problems are

well-posed compared to the ones in the asymptotic expansion of the EM fields.

Since the conductivity κs of the biological is very small compared to the other quan-

tities we neglect it and find the following equation for the temperature:

ρ0cp
∂T0

∂t
= ω�(ε)|E|2δ0(t),

which combined with the acoustic waves (3.16), provides at the end the following model

for the photoacoustic effect by a metallic nanoparticle:⎧⎪⎨⎪⎩
1
c2s

∂2p
∂t2 (x, t)−Δp(x, t) = 0 in R

2 × R+,

p(x, 0) = ωβ0

cp
�(ε)(x)|E(x)|2 in R2,

∂p
∂t (x, 0) = 0 in R

2.

(3.18)

The system above (3.18) coupled with the Helmholtz equation (2.1)-(2.2) represents the

forward problem. Next, we study the photoacoustic inverse problem.

4. The photoacoustic inverse problem. In this section we study the inverse prob-

lem of the reconstruction of the electric permittivity ε from the measurements of the

acoustic waves p(x, t), (x, t) ∈ ∂Ω × (0, τp), generated by the photoacoustic effect from

the heating of the small metallic nanoparticle Bα in the presence of electromagnetic

fields at a frequency close to a plasmonic resonance. Here τp > 0 is the period of time

where the measurements are taken, that will be specified later. We have two inversions:

the acoustic inversion where we assume that the speed of the wave is a known constant

cs and reconstruct the initial pressure �(ε(x))|E(x)|2, x ∈ Ω from the knowledge of

p(x, t), (x, t) ∈ ∂Ω × (0, τp); the second step is to recover the electric permittivity ε(x)

from the internal data �(ε(x))|E(x)|2, x ∈ Ω.

4.1. Acoustic inversion. Recall that �(ε)(x) is a compactly supported function in Ω,

and that we have assumed that the acoustic wave speed in the tissue takes a constant

value cp that corresponds to the isentropic acoustic speed in the water, that is, 1400

m/s. These two assumptions allow us to use well-known results from control theory to

derive a stability estimate for the acoustic inversion. The following result is based on the

multiplier method and can be found in [30, 39].
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Theorem 4.1. Let τp > τΩ where τp = supx,y∈Ω |x − y|. Then, there exists a constant

C = C(Ω) > 0 such that

ωβ0

cp
‖�(ε(x))|E(x)|2‖L2(Ω) ≤ C‖∂p

∂t
‖L2(∂Ω×(0,τp)) + ‖∇p‖L2(∂Ω×(0,τp)).

We refer the readers to the survey [36] on related reconstruction methods and different

approaches based on integral equations for constant acoustic speed. The stability result

shows that the reconstruction of the electromagnetic energy responsible for the generation

of the acoustic signal by heating the nanoparticle from boundary measurements of the

acoustic waves is stable if the observation time τp is large enough. This result can be

extended to a non-constant acoustic speed as well as measurements of the acoustic waves

on a small part of the boundary [4,33,49]. In this paper for the sake of simplicity we do

not handle such general cases.

We further assume that the constants β0 and cp are given. Let OM denote the ball

centered at 0 and of radius M > 0 in H2(BR(z
�)), where R > 0 is large enough such

that Ω ⊂ BR(z
�).

Corollary 4.1. Assume that ε ∈ BM (0), and let τp > τΩ. Then, there exists a constant

C = C(ω,M, β0, cp) > 0 such that the following estimate:

‖�(ε)|∇H|2‖C0(Ω) ≤ C

(∥∥∥∥∂p∂t
∥∥∥∥
L2(∂Ω×(0,τp))

+ ‖∇p‖L2(∂Ω×(0,τp))

) 1
4

, (4.1)

holds.

Proof. A simple calculation yields |E(x)|2 = |∇H(x)|2 over Ω. Using the interpolation

between Sobolev spaces [40], we estimate �(ε)|∇H|2 in H
3
2 (Ω) in terms of its norms in

L2(Ω) and H2(Ω), respectively. Thus we deduce (4.1) from elliptic regularity of the

system (2.1) and the estimate in Theorem 4.1. �
4.2. Optical inversion. In this part of the paper we assume that the internal electro-

magnetic energy

�(ε(x))|∇H(x)|2

for x ∈ Ω is recovered, and we study the inverse problem of determining ε(x) over Ω

using the small volume asymptotic expansion of the EM fields in the previous section. In

fact in applications we only need to recover the imaginary part of the electric permittivity

which is related to the absorption of the EM fields and the generation of the photoacoustic

wave.

Recall that the absorption of EM energy by only the biological tissue is negligible

inside Ω. In practice the photoacoustic signal generated by such absorption is weak

inside Ω and cannot be used to image the tissue itself.

From section 2 we deduce the inner and outer asymptotic expansions of the magnetic

field |∇H(x)|2. Our strategy here is to first analyze the information about the medium

and the nanoparticle contained in the outer asymptotic expansion. This problem is a

classical boundary/internal inverse problem, and has some known limitations. Then we
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complete the recovery of the optical properties of the medium using information retrieved

from the inner expansion of the magnetic field and the a priori information about the

shape of the nanoparticle.

4.2.1. Inversion using the outer expansion. Recall the outer asymptotic expansion

(2.16)- (2.32) of the magnetic field:

H(x) = H0(x) + α2H2(x) + o(α2) for x ∈ ∂Ω,

where H0(x) is the solution to the system (2.11)- (2.12), and H2(x) is given by

H2(x) =

(
1

εm(ω)
− 1

εs(z�)

) ˆ
B

∂ξkh1(ξ
′)dξ′∂xk

G(x, z�)

with h1(ξ) the unique solution to the system (2.24)-(2.25).

In fact the asymptotic expansion above is valid in a neighboring region of the boundary

∂Ω, but since the internal data is of the form �(ε(x))|∇H(x)|2, where �(ε) is compactly

supported in Ω, we can only retrieve information about the magnetic field on the bound-

ary ∂Ω. Note that since ε0 is given one can retrieve the Cauchy data of the magnetic

field on ∂Ω from the knowledge of its trace on the same set.

The function H2(x) can be rewritten in terms of the first order polarization tensor

M( εm(ω)
εs(z�) ) = (Mkl)1≤k,l≤2, as follows (see, for instance, [7] and the references therein):

H2(x) =

(
1

εm(ω)
− 1

εs(z�)

)
∇G(x, z�) ·M∇H0(z

�),

where

Mkl =

ˆ
B

∂ξkφl(ξ
′)dξ′, (4.2)

and φl(ξ), l = 1, 2 are the unique solutions to the system

∇ ·
(
1

ε̃
∇φl(ξ)

)
= 0 in R

2, (4.3)

lim
ξ→+∞

(φl(ξ)− ξl) = 0. (4.4)

On the other hand, φl(ξ), l = 1, 2 can be rewritten as follows:

φl(ξ) = ξl −
(

εm(ω)

εs(z�)− εm(ω)
I + T0

)−1

ξ̂l(ξ), (4.5)

where ξ̂l(ξ) ∈ W 1,−1
0 (R2) is the orthogonal projection of ξlχB(ξ) onto W 1,−1

0 (R2) defined

in (2.29).

Regarding the integral equation (4.5), we observe that when ω tends to a plasmonic

resonance ωj(α) the functions φl(ξ), and, consequently, the polarization tensor M will

most likely blow up. Since in applications ω is real, and the plasmonic resonances of

the nanoparticle embedded in the medium approaches the quasi-static resonances ωj(0)

when α tends to zero (Proposition 2.2, we expect that the coefficient M becomes large

in the case where ω coincides with �(ωj(0)), and Γ  1.

Many works have considered the localization of small inhomogeneities in a known back-

ground medium, and most of the proposed methods are based on an appropriate averaging

of the asymptotic expansion by using particular background solutions as weights [7, 12].
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In other words, the position z� of the nanoparticle can be uniquely determined from

the outer expansion of H(x), that is, H0(x) + α2H2(x), x ∈ ∂Ω, if the electric permit-

tivity of the background medium εs(x) is known everywhere. But this is not the case

in our problem, since our objective is to determine εs(x), while εm(ω) is known (which

is the complete opposite of the setting where small inhomogeneities are imaged). Here

to overcome these difficulties we may propose the use of multifrequency measurements

H2(x), ω ∈ (ω, ω) to localize z� [15, 28], where ω, ω are two strictly positive constants

satisfying ω  ω. We will study this specific inverse problem in future works. From now

on we assume that the position z� of the nanoparticle is known.

Note that in general if εs(x) is known, it is still not possible to recover simultaneously

the shape of the nanoparticle ∂B and the contrast εs(z
�)

εm(ω) from only the measurement of

the outer expansion H0(x) + α2H2(x), x ∈ ∂Ω. Meanwhile in our setting the shape of

the nanoparticle is assumed to be known. For example, if we consider the circular shape,

that is, B is the unit disc, ξ̂l(ξ), l = 1, 2, and hence φl(ξ), l = 1, 2, can be determined

explicitly

ξ̂l(ξ) =

{
ξl
2 for ξ ∈ B,
ξl

2|ξ|2 for ξ ∈ R
2 \B,

(4.6)

φl(ξ) =

{
2εm(ω)

εs(z�)+εm(ω)ξl for ξ ∈ B,

ξl − εs(z
�)−εm(ω)

εs(z�)+εm(ω)
ξl
|ξ|2 for ξ ∈ R2 \B,

(4.7)

which implies that the polarization tensor can be simplified into

Mkl =
2εm(ω)

εs(z�) + εm(ω)
|B|δkl,

where δkl is the Kronecker delta. Assuming that H0(x), x ∈ ∂Ω is given, we deduce from

the outer expansion the following approximation [7, 12]:

1

ε0

ˆ
∂Ω

(
H

∂H0

∂νΩ
− ∂H

∂νΩ
H0

)
ds(x) (4.8)

= α2

(
1

εm(ω)
− 1

εs(z�)

)
∇H0(z

�) ·M∇H0(z
�) + o(α2)

= 2|B|εs(z
�)− εm(ω)

εm(ω) + εs(z�)

1

εs(z�)
|∇H0(z

�)|2 α2 + o(α2). (4.9)

To ensure that the first term of the asymptotic expansion does not vanish, and to

guarantee the success of the identification procedure, it becomes necessary to assume the

following non-degeneracy condition:

|∇H0(z
�)|2 �= 0.

For a circular shape nanoparticle we can immediately see from the explicit expression

of the first term in the asymptotic expansion that when ω is close to a plasmonic reso-

nance, that is, εm(ω) = −εs(z
�), the polarization tensor constant blows up. In the next

paragraph we investigate the inner expansion of the magnetic field which represents our

photoacoustic data, in order to derive the contrast εs(z
�)

εm(ω) .
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4.2.2. Inversion using the inner expansion. We further assume that the position z�,

the size α, and the shape ∂B of the nanoparticle are known. Recall the inner expansion

(2.17):

H(z� + αξ) = H0(z
�) + αh1(ξ) + α2 ln(α)h2(ξ) +O(α2) for |ξ| = O(1),

where h1(ξ) is the unique solution to the system (2.24)-(2.25), that is,

∇ ·
(
1

ε̃
∇h1(ξ)

)
= 0 in R

2,

lim
ξ→+∞

(h1(ξ)− ∂xi
H0(z

�)ξi) = 0,

and h2(ξ) is a constant function given by

h2(ξ) =
1

4π

(
1

εm
− 1

εs(z�)

)
∂xk

εs(z
�)

ˆ
B

∂ξkh1(ξ
′)dξ′.

Using the functions φl, l = 1, 2 solutions to the system (4.3)-(4.4), we can rewrite h1(ξ)

as

h1(ξ) = φk(ξ)∂xk
H0(z

�). (4.10)

Recall that the acoustic inversion provides the internal function

Ψ(x) = �(ε(x))|∇H(x)|2, x ∈ Ω.

Combining (2.17) and (2.21), we obtain the following inner expansion:

Ψ(z� + αξ) = �(ε(z� + αξ))|∇H(z� + αξ)|2

= �(ε̃(ξ))|∇ξh1(ξ)|2 +O(α2) for |ξ| = O(1). (4.11)

We further assume that B is the unit disc. Our objective is to recover εs(z
�) from the

knowledge of �(ε̃(ξ))|∇ξh1(ξ)|2 for ξ ∈ 2B, where 2B is the disc of center zero and radius

2.

Combining (4.10) and (4.7), we find

h1(ξ) =

{
(1− κ) ξ · ∇H0(z

�) for ξ ∈ B,(
1− κ

|ξ|2
)
ξ · ∇H0(z

�) for ξ ∈ 2B \B,

where

κ :=
εs(z

�)− εm(ω)

εs(z�) + εm(ω)
.

Hence

Ψ(z� + αξ) + o(α) =

{ �(εm(ω))|1− κ|2|∇H0(z
�)|2 for ξ ∈ B,

�(εs(z�))
∣∣∣∇ξ

((
1− κ

|ξ|2
)

ξ
|ξ|2 · ∇H0(z

�)
)∣∣∣2 for ξ ∈ 2B \B.

A forward calculation yields

Ψ(z� + αξ) = �(εs(z�))
∣∣∣∣(1− κ

|ξ|2

)
∇H0(z

�) + 2κ
ξ

|ξ|2 · ∇H0(z
�)

ξ

|ξ|2

∣∣∣∣2 +O(α)

for ξ ∈ 2B \B.
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Now taking the ratio between Ψ|+∂Bα
and Ψ(z�) =

 
Bα

Ψ(x)dx, we obtain

Ψ(z� + αξ)|+
Ψ(z�)

=
�(εs(z�))
�(εm(ω))

(∣∣∣∣1 + κ

1− κ

∣∣∣∣2 ∣∣∣∣ ∇H0(z
�)

|∇H0(z�)|
· ξ

∣∣∣∣2 + ∣∣∣∣ ∇H0(z
�)

|∇H0(z�)|
· ξ⊥

∣∣∣∣2
)

+O(α),

= Ψ0(ξ) +O(α) (4.12)

for ξ ∈ ∂B =
{
ξ′ ∈ R2; |ξ′| = 1

}
, where ξ⊥ is a π

2 counterclockwise rotation of ξ.

Now, assuming that |�(εm(ω))| > |�(εs(z�))|, we have∣∣∣∣1 + κ

1− κ

∣∣∣∣ > 1,

and thus the function Ψ0(ξ) takes its maximum and minimum on ∂B at ξ = ± ∇H0(z
�)

|∇H0(z�)|

and ξ = ±∇H0(z
�)⊥

|∇H0(z�)| , respectively.

Consequently,

�(εs(z�))
�(εm(ω))

=
Ψ(z� + α∇H0(z

�)⊥

|∇H0(z�)| )|+
Ψ(z�)

+O(α) (4.13)

= min
ξ∈∂B

Ψ(z� + αξ)|+
Ψ(z�)

+O(α) (4.14)

and

�(εs(z�))
�(εm(ω))

∣∣∣∣1 + κ

1− κ

∣∣∣∣2 =
Ψ(z� + α ∇H0(z

�)
|∇H0(z�)| )|+

Ψ(z�)
+O(α) (4.15)

= max
ξ∈∂B

Ψ(z� + αξ)|+
Ψ(z�)

+O(α). (4.16)

Since εm(ω) is given, we can retrieve �(εs(z�)) from equality (4.13), and then �(εs(z�))
from equality (4.14). Now, we are able to prove the main stability estimate.

4.3. Proof of the main Theorem 1.1. We deduce from equalities (4.13)-(4.14) the fol-

lowing estimates.

Theorem 4.2. Under the same assumptions as in Theorem 1.1, there exists a constant

C > 0 that does not depend on α, such that

|�(εs,a(z�))−�(εs,a(z�))| ≤ C‖Ψa −Ψb‖L∞(2Bα) +O(α).

Proof. Equalities (4.13)-(4.14) imply

Ψ0,a(
∇H0,a(z

�)⊥

|∇H0,a(z�)|
) = min

ξ∈∂B
Ψ0,a(ξ)

= min
ξ∈∂B

(Ψ0,b(ξ) + Ψ0,a(ξ)−Ψ0,b(ξ)) .

Therefore,

min
ξ∈∂B

(Ψ0,b(ξ)− |Ψ0,a(ξ)−Ψ0,b(ξ)) | ≤ Ψ0,a(
∇H0,a(z

�)⊥

|∇H0,a(z�)|
)

≤ min
ξ∈∂B

(Ψ0,b(ξ) + |Ψ0,a(ξ)−Ψ0,b(ξ)|) ,
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which implies

|Ψ0,a(
∇H0,a(z

�)⊥

|∇H0,a(z�)|
)−Ψ0,b(

∇H0,b(z
�)⊥

|∇H0,a(z�)|
)| ≤ max

ξ∈∂B
|Ψ0,a −Ψ0,b|, (4.17)

and, consequently,

|Ψ0,a(
∇H0,a(z

�)⊥

|∇H0,a(z�)|
)−Ψ0,a(

∇H0,b(z
�)⊥

|∇H0,a(z�)|
)| ≤ 2 max

ξ∈∂B
|Ψ0,a −Ψ0,b|.

Using the explicit expression of Ψ0,a(ξ) given in (4.12), we find∣∣∣∣∇H0,a(z
�)⊥

|∇H0,a(z�)|
− ∇H0,b(z

�)⊥

|∇H0,b(z�)|

∣∣∣∣ ≤ C max
ξ∈∂B

|Ψ0,a −Ψ0,b|.

Since εs,a(z
�) is lower bounded, combining the estimate above and (4.17), we obtain the

desired result. �
Now, by combining the results of Theorem 4.1, Corollary 4.1, and Theorem 4.2, we

have the main stability estimate in Theorem 1.1.

5. Appendix. In this section we derive the asymptotic expansion of the gradient of

the Green function ∇xG(z� + αξ, z� + αξ′) when α tends to zero.

Theorem 5.1. Let G(x, y) be the Green function solution to the system (2.13)-(2.14).

Then, the following asymptotic expansion holds:

α∂xk
G(z� + αξ, z� + αξ′) = εs(z

�)∂ξkΦ0(ξ, ξ
′) +

1

4π
∂xk

εs(z
�)α ln(α) + αΦ1(ξ, ξ

′) + o(α)

for all ξ, ξ′ ∈ B satisfying ξ �= ξ′, and o(α) is uniform in ξ, ξ′ ∈ B.

Φ0(ξ, ξ
′) = 1

2π ln(|ξ − ξ′|) is the Green function of the Laplacian in the whole space,

and Φ1(ξ, ξ
′) has a logarithmic singularity on the diagonal ξ = ξ′, that is, |Φ1(ξ, ξ

′)| ≤
C|Φ0(ξ, ξ

′)| for all ξ, ξ′ ∈ B, with C > 0 a constant that only depends on εs(x).

Proof. We first use the Liouville transformation and substitute the Green function

G(x, y) by

G(x, y) =
1

ε
1
2
s (x)ε

1
2
s (y)

G(x, y)

in the system (2.13)-(2.14), to obtain

ΔG(x, y) + V (x)G(x, y) = δy(x) in R
2 (5.1)

with the Sommerfeld radiation condition as |x| → +∞:

∂G

∂|x| − iω
√
ε0μ0G = O(

1√
|x|

) (5.2)

and where

V (x) := ω2μ0εs(x)−
Δε

1
2
s (x)

ε
1
2
s (x)

. (5.3)

For simplicity, we assume that V (z�) �= 0. If it is not the case the proof can be slightly

modified.
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LetG0(x, y) be the Green function of the Helmholtz equation in the free space, solution

to the system

ΔG0(x, y) + V (y)G0(x, y) = δy(x) in R
2 (5.4)

with the Sommerfeld radiation condition as |x| → +∞:

∂G0

∂|x| − i
√
V (y)G0 = O(

1√
|x|

). (5.5)

The function G0(x, y) is given by

G0(x, y) = − i

4
H

(1)
0 (

√
V (y)|x− y|) for x �= y,

where H
(1)
0 (t) is the Hankel function of the first kind of order zero.

Now, we shall derive the asymtotic expansion of ∂xk
G(x, y) as x tends to y.

Let

G(ξ, ξ′) := G(x, y)−G0(x, y).

It satisfies the Helmholtz equation

ΔG(x, y) + V (x)G(x, y) = −(V (x)− V (y))G0(x, y) in BR(z
�) (5.6)

with the boundary condition

G(x, y) = G(x, y)−G0(x, y) on ∂BR(z
�). (5.7)

Further, we fix R > 1 such that the system (5.6)-(5.7) has a unique solution. Since the

H
(1)
0 (t) has a logarithmic singularity as t tends to zero, the right hand side belongs to

C0,ι(BR(z�)) for any ι ∈ [0, 1), uniformly in y ∈ B1(z
�) (see, for instance, Proposition

4.1 in [20]).

Considering the fact that G(x, y)−G0(x, y) ∈ C∞(∂BR(z
�)×B1(z

�)), we deduce from

elliptic regularity that G(x, y) ∈ C2,ι(BR(z�)) uniformly in y ∈ B1(z
�) [41]. In addition,

due to the explicit expression of the right hand side in equation (5.6), one can prove

easily that ∂xk
G(z� + αξ, z� + αξ′) has a finite continuous limit when α tends to zero,

denoted by Φ11(ξ, ξ
′).

From known asymptotic expansions of Hankel functions, we have [1]

∂xk
G0(z

� + αξ, z� + αξ′) =
1

α
∂xk

Φ0(ξ, ξ
′) + α ln(α)|ξ − ξ′|+O(α),

where O(α) is uniform in ξ, ξ′ ∈ B.

Consequently,

α∂xk
G(z� + αξ, z� + αξ′) = ∂xk

Φ0(ξ, ξ
′) + αΦ11(ξ, ξ

′) + o(α),

which combined with the regularity of εs(x) achieves the proof of the theorem. �
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