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Abstract. We consider the problem of computing (macroscopic) effective properties

of composite materials that are mixtures of complex dispersive dielectrics described by

polarization and magnetization laws. We assume that the micro-structure of the com-

posite material is described by spatially periodic and deterministic parameters. Math-

ematically, the problem is to homogenize Maxwell’s equations along with constitutive

laws that describe the material response of the micro-structure comprising the mixture,

to obtain an equivalent effective model for the composite material with constant effective

parameters. The novel contribution of this paper is the homogenization of a hybrid model

consisting of the Maxwell partial differential equations along with ordinary (auxiliary)

differential equations modeling the evolution of the polarization and magnetization, as

a model for the complex dielectric material. This is in contrast to our previous work

(2006) in which we employed a convolution in time of a susceptibility kernel with the

electric field to model the delayed polarization effects in the dispersive material. In this

paper, we describe the auxiliary differential equation approach to modeling material re-

sponses in the composite material and use the periodic unfolding method to construct a

homogenized model.
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1. Introduction. Computational simulations of the propagation and scattering of

transient electromagnetic (EM) waves in complex materials are important for construct-

ing prediction tools that are reliable [29]. Examples are applications involving radar,

environmental and medical imaging, such as the noninvasive detection of degradation in

materials, the detection of cancerous tumors [17], the investigation of the effect of precur-

sors on the human body, and the design of engineered composites such as ceramic matrix

composites (CMCs) and metamaterials [35]. Thus, the development and analysis of ef-

ficient forward numerical methods which are accurate, consistent, and stable has been

and continues to be an important area of research in computational electromagnetics.

For some time there has been interest in the integration of silicon nitride carbon based

ceramic matrix composites (CMCs) for their use in high temperature turbine engines

[2,25]. As these materials are being investigated for their use in these applications, there

is also a need to nondestructively monitor the material’s degradation. In recent efforts

[5–7], the authors were specifically interested in a silicon nitride carbon based CMC. This

SiC/SiCN CMC has a silicon carbon fiber and a silicon nitride carbon matrix. Expo-

sure to high temperature environments induces oxidation in the CMC, producing SiO2

and SiN. As discussed in [5–7, 14, 15], multiple Lorentz polarization laws (based on the

Lorentz model for polarization (95) which results from the displacement of electrons from

equilibrium under the effect of an interrogating electromagnetic field) are appropriate to

use in describing these components.

More recently, there has been increased activity in the design and development of new

materials called metamaterials, with tailored EM properties. These materials are a broad

class of micro- or nano-structures made up of tailored building blocks that are smaller

than the wavelength of the interrogating electromagnetic field, thus enabling dense pack-

ing into an effective material [34]. Metamaterials are fabricated through engineering

design as building blocks for devices with unique EM responses, from the microwave to

the optical frequency range [35].

For a complex dispersive dielectric that exhibits a heterogeneous micro-structure de-

scribed by spatially periodic parameters, we consider an electromagnetic interrogation

technique for identifying the response of this composite material by subjecting it to elec-

tromagnetic fields generated by currents of varying frequencies. When the period of the

structure is small compared to the wavelength of the interrogating field, the coefficients

in Maxwell’s equations oscillate rapidly, and are difficult to treat numerically in simu-

lations. We use the mathematical theory of homogenization to produce an equivalent

model for efficient simulation of the response of the heterogeneous material to the in-

terrogating electromagnetic field. Homogenization is a mathematical method in which

a model for a composite material involving spatially dependent parameters (depending

on the microscopic structure) is replaced with a model for an equivalent material with

macroscopic, homogeneous properties. The limiting homogeneous model with effective

constant coefficients is easier to numerically discretize. The approach to homogenization

that we take here is based on the periodic unfolding method presented in [11].

For the computation of effective parameters of composite materials, traditional mix-

ture formulas based on physical arguments [30] are available in the literature. Some of
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the most popular mixing formulas are the Maxwell Garnett formula, the Böttcher mix-

ture rule or Bruggeman formula, and the coherent potential formula. The mathematical

theory of homogenization has also been applied to Maxwell’s equations in composite ma-

terials. In [1, 16, 20, 21, 24, 32, 33, 36] using a variety of techniques, including two scale

convergence, homogenized models for Maxwell’s equations in composite materials having

anisotropy and memory effects are constructed. In [23], a singular limit approximation

of the constitutive laws for chiral media in the time domain are studied, while in [26],

an asymptotic homogenization approach for 3D periodic lattices of complex media in-

clusions with bianisotropic properties is constructed. Additional constructions can be

found in [27, 28]. In [9, 37, 38] multiscale numerical methods based on finite elements

and finite differences are constructed for the time-dependent Maxwell’s equations with

memory effects in composite materials (linear dispersive dielectrics). Numerical homoge-

nization using the heterogeneous multiscale method, and based on two scale convergence

for Maxwell’s equations is presented in [10].

In this paper, we use the periodic unfolding method, introduced in [12] in the abstract

framework of stationary elliptic equations, to homogenize the time-dependent Maxwell’s

equations in complex materials that are described by constitutive laws involving the time

evolution of the electric polarization and magnetization. We continue our efforts from

[3, 8] in which we considered composite materials described by convolutions in time of a

susceptibility kernel with the electric and/or magnetic field. The periodicity of the com-

posite material results in spatially periodic parameters in the convolution description

of the polarization and magnetization, as well as in the electric permittivity, magnetic

permeability, and conductivity of the material. In this paper, we use a different but

equivalent approach called the auxiliary differential equation (ADE) approach, in which

the time evolution of the polarization is modeled by a system of first order ordinary

differential equations (ODEs) forced by the electric field. Using an analogous approach

for the magnetization, we also include systems of ODEs for the time evolution of the

magnetization dependent on the magnetic field. Appending these ODEs to the Maxwell

partial differential equations (PDEs) gives a hybrid PDE-ODE model for the composite

material with spatially varying (periodic) parameters and fields. The homogenization of

this hybrid PDE-ODE model provides an alternative homogenized model to the convo-

lution approach in [3, 8] for computing the effective response of the complex composites

considered here.

The outline of the rest of the paper is as follows. In Section 2, we describe Maxwell’s

equations, and present constitutive laws in ODE form for the polarization and magneti-

zation in Section 3. In Section 4, we present a priori estimates and in Section 5, using the

periodic unfolding method and the theory developed in [8], we develop the homogenized

limit model for Maxwell’s equations considered in this paper. In Section 6, we consider

some specific models for linear dispersive and metamaterials, and in Section 7, we use

the general theory developed in Section 5, to develop the limit homogenized model for

a composite material described by the Debye model for orientational polarization with

spatially periodic parameters.
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2. Maxwell’s equations in a complex dielectric. We start with Maxwell’s equa-

tions for a linear and isotropic dielectric that includes terms for the electric polarization

and magnetization. Consider a time T > 0 and let Ω ⊂ R3 be a bounded domain with

Lipschitz boundary ∂Ω. Maxwell’s curl equations are given as:

∂D

∂t
= ∇×H− JE in (0, T )× Ω, (1)

∂B

∂t
= −∇×E− JH in (0, T )× Ω, (2)

along with zero Gauss divergence laws

∇ · D = 0, ∇ · B = 0 in (0, T )× Ω, (3)

in a region Ω with no free charges. The vector valued functions E and H represent the

strengths of the electric and magnetic fields, respectively, while D and B are the electric

and magnetic flux densities, respectively. The external electric and magnetic source

current densities are given by JE , and JH , respectively.

We assume perfect conducting boundary conditions on the boundary ∂Ω given by

n× E = 0 on [0, T ]× ∂Ω, (4)

where n is the unit normal vector to ∂Ω. We have the initial conditions

E(0,x) = E0, H(0,x) = H0 in Ω. (5)

The fields E0,H0 are the initial electric and magnetic fields. We assume that these initial

fields satisfy the Gauss divergence laws.

System (1) is completed by constitutive laws that embody the behavior of the material

in response to the electromagnetic fields. These are given in the form

D(t,x) = ε0εr(x)E(t,x) + PR(t,x) in (0, T )× Ω, (6)

B(t,x) = μ0μr(x)H(t,x) +MR(t,x), in (0, T )× Ω. (7)

To describe the behavior of the media’s macroscopic retarded (or delayed) electric

polarization PR, and magnetization MR, we employ a general integral equation model

in which the polarization, and magnetization, explicitly depend on the past history of

the electric, and magnetic fields, respectively. We assume that there are no free elec-

tric charges unaccounted for in the electric polarization P. The model for polarization

is sufficiently general to include microscopic polarization mechanisms such as dipole or

orientational polarization [19] as well as ionic and electronic polarization [18] and other

frequency dependent polarization mechanisms leading to linear models [4]. In addition,

with nonzero magnetization we can also include the case of the Drude and Lorentz

metamaterial models [22]. The resulting constitutive laws for the polarization and mag-

netization can be given in terms of an electric susceptibility kernel νE, and magnetic
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susceptibility kernel νH in the form

PR(t,x) =

∫ t

0

νE(t− s,x)E(s,x) ds, (8)

MR(t,x) =

∫ t

0

νH(t− s,x)H(s,x) ds. (9)

3. The auxiliary differential equation (ADE) technique: ODE models for

polarization and magnetization. We consider composite materials (see Figure 1)

which have a periodic micro-structure, α in which the inclusions inside the host matrix,

and the host matrix are both described as materials with responses governed by (8)

and (9). Thus, the polarization, and magnetization vectors PR, and MR are modeled

by different susceptibility kernels, one inside the inclusion and another within the host

material.
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Fig. 1. A two dimensional periodic composite material presenting
a circular micro-structure with periodicity α. The figure shows α
decreasing from left to right. The picture also depicts the cell Yα.

We will consider the case where the polarization, and magnetization vectors, PR and

MR modeled by convolutions of susceptibility kernels with the electric field E, and mag-

netic field H, respectively, can be equivalently described by laws in which the dynamic

evolution of PR and MR is given in the time domain, by nth order ordinary differential

equations (ODEs) in the form

NE∑
j=0

aEj (x)
∂jPR

∂tj
(t,x) + βE

0 (x)E(t,x) = 0, (10)

NH∑
j=0

aHj (x)
∂jMR

∂tj
(t,x) + βH

0 (x)H(t,x) = 0, (11)
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on (0, T ) × Ω with aENE
(x) and aHNH

(x) strictly positive functions of x on Ω. Thus, in

the most general case both the host matrix and the inclusions are modeled by different

constitutive laws given in the form of equations (6), (10), and (11). We refer the reader

to the books [4, 22] for a discussion on the class of polarization and magnetization laws

given by susceptibility kernals that can be equivalently defined using systems of ODEs.

In this paper, we will assume that the host matrix and inclusions are modeled by

the same system of ODEs, with the material coefficients aEi , i = 0, . . . , NE , and aHi , i =

0, . . . , NH , given as functions of the spatial variable x to accommodate treatment of

composite materials and structures. The ODE models for PR and MR can be written

as a system of first order ordinary differential equations. If NE = NH = 1, then this

will already be the case. Thus, if NE ≥ 2 and NH ≥ 2, we can rewrite the models as

systems of ODEs. To do this, we define P(0) = PR and M(0) = MR, and define the time

derivatives

P
(�+1) =

∂�PR

∂t�
, M

(j+1) =
∂jMR

∂tj
, (12)

for � = 0, 1, . . . , NE − 2 and j = 0, 1, . . . , NH − 2. Next, for (t,x) ∈ [0, T ]× Ω, we define

the vector functions

P(t,x) =
(
P
(0)(t,x),P(1)(t,x), . . . ,P(NE−1)(t,x)

)T

, (13)

M(t,x) =
(
M

(0)(t,x),M(1)(t,x), . . . ,M(NH−1)(t,x)
)T

. (14)

Using (13) and (14) we can rewrite (10) and (11) as

(SE
1 (x)⊗ I3)

∂P

∂t
+ (SE

2 (x)⊗ I3)P+ (SE
3 (x)⊗ I3)E = 0, (15)

(SH
1 (x)⊗ I3)

∂M

∂t
+ (SH

2 (x)⊗ I3)M+ (SH
3 (x)⊗ I3)H = 0. (16)

The form of the matrices in (15) and (16) depend on the values of NE and NH .

Case (NE = NH = 1). If the evolution of P and M are governed by first order ODEs,

then, for V ∈ {E,H}, i.e., V = E or V = H, the matrices in (15) and (16) are of order

1× 1, i.e., scalar functions given as

SV
1 (x) = aV1 (x), (17a)

SV
2 (x) = aV0 (x), (17b)

SV
3 (x) = βV

0 (x). (17c)

Case (NE ≥ 2, NH ≥ 2). Let n, k ∈ N. We define In to be the n× n identity matrix,

and 0n×k to be the n× k matrix of zeros. We denote 0n = 0n×n.

In this case, SV
1 (x) is an NV ×NV diagonal matrix, with

SV
1 (x) =

[
INV −1 0

0NV −1 aVNV
(x)

]
. (18)
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The matrix SV
2 (x) is theNV ×NV matrix with -1 on the super-diagonal, (a0(x), a1(x), . . . ,

aNV −1(x), 0) in the NV th row and zeros elsewhere. The matrix SV
3 (x) is an NV × 1

matrix, with zeros in all rows except the NV th element which is βV
0 (x).

3.1. Maxwell’s equations with polarization and magnetization laws. Define

n = 3(2 +NE +NH).

We define the vector function u : (0, T )× Ω → Rn given as

u(t,x) = (u1,u2,u3,u4)
T = (E(t,x),P(t,x),H(t,x),M(t,x))T . (19)

We can rewrite Maxwell’s equations along with the constitutive laws (10) and (11) in the

form⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(i) A(x)

∂u

∂t
(t,x) +B(x)u(t,x) = Fu(t,x)− Js(t,x) in (0, T )× Ω,

(ii) u(0,x) = u0 in Ω,

(iii) u1(t,x)× n(x) = 0 on (0, T )× ∂Ω.

(20)

In the above, A and B are n× n diagonal matrices with the following forms:

A(x) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

ε0εr(x) 01×NE
0 01×NH

0NE×1 SE
1 (x) 0NE×1 0NE×NH

0 01×NE
μ0μr(x) 01×NH

0NH×1 0NH×NE
0NH×1 SH

1 (x)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
⊗ I3, (21)

while the matrix B is the n× n matrix given by

B(x) =

⎡⎢⎢⎢⎢⎢⎢⎣
SE
5 (x) SE

4 (x) 0 01×NH

SE
3 (x) SE

2 (x) 0NE×1 0NE×NH

0 01×NE
SH
5 (x) SH

4 (x)

0NH×1 0NH×NE
SH
3 (x) SH

2 (x)

⎤⎥⎥⎥⎥⎥⎥⎦⊗ I3. (22)

Case (NE = NH = 1). In this case n = 12. The matrices SV
j (x) for j = 1, 2, 3 and

V ∈ {E,H} are given in Section 3. The additional matrices SV
4 (x) and SV

5 (x) are scalars

defined as;

SE
5 (x) = −βE

0 (x)

aE1 (x)
, SE

4 (x) = −aE0 (x)

aE1 (x)
, (23)

SH
5 (x) = −βH

0 (x)

aH1 (x)
, SH

4 (x) = −aH0 (x)

aH1 (x)
. (24)

Case (NE ≥ 2, NH ≥ 2). In this case, matrices SE
4 and SH

4 are of order 1×NE and

1 × NH , respectively, each with a 1 in the second column and zeros elsewhere. Also,

SE
5 (x) = 0 and SH

5 (x) = 0 are both scalar quantities.

Next, we define the formal (extended) Maxwell operator M by

Fu(t,x) = ((∇×H)(t,x),03NE×1,−(∇×E)(t,x),03NH×1)
T
, (25)
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and the vector Js as

Js(t,x) = (Js,1, Js,2, Js,3, Js,4)
T = (JE(t,x),03NE×1, JH(t,x),03NH×1)

T . (26)

4. A priori estimates. We consider the space

V(Ω) = H0(curl,Ω)× (H(curl,Ω))NE ×H(curl,Ω)× (H(curl,Ω))NH , (27)

where we define

H(curl,Ω) = {v ∈ L2(Ω;R3); curl v ∈ L2(Ω;R3)},

equipped with the norm ||v||2 = |v|2 + |curl v|2, and

H0(curl,Ω) = {v ∈ H(curl,Ω); n× v = 0 in H− 1
2 (∂Ω;R3)}.

Let n = 3(2 +NE +NH).

Lemma 1. Consider the Maxwell system (20) along with (21) and (22) in which the matri-

ces A,B ∈ L∞(Ω;Rn2

), with the matrix A symmetric and uniformly coercive. Assuming

that the initial condition u0 ∈ V (Ω) and the source term Js ∈ W 1,1(0, T ;L2(Ω;Rn)),

system (20) has a unique solution u = (E,P,H,M)T with the property

E ∈ C1([0, T ];L2(Ω,R3)) ∩ C0([0, T ];H0(curl,Ω)), (28)

P ∈ C1([0, T ];L2(Ω,R3NE )) ∩ C0([0, T ]; (H0(curl,Ω))
NE ), (29)

H ∈ C1([0, T ];L2(Ω,R3)) ∩ C0([0, T ];H(curl,Ω)), (30)

M ∈ C1([0, T ];L2(Ω,R3NH ) ∩ C0([0, T ]; (H(curl,Ω))NH ). (31)

We also have the a priori estimate

||u||L∞(0,T ;V (Ω)) + ||du
dt

||L∞(0,T ;L2(Ω;Rn)) ≤ CeC1t(||Js||W 1,1(0,T ;L2(Ω;Rn)) + ||u0||V (Ω)),

(32)

where the constants C,C1 are strictly positive and depend only on the data A,B.

Proof. The proof of this result can be constructed by using the Faedo-Galerkin method.

There are three steps involved in the proof: 1) Showing the existence of an approximate

solution um of u, 2) Estimates on um, and 3) existence of the solution u by proving

convergence of um to u and of dum

dt in L∞(0, T ;L2(Ω;Rn)), which can be done based on

results in [8]. The a priori estimates are based on a conservation law that is satisfied in

these linear media. This law is given as

1

2

∫
Ω

A(y)u(t,x) · u(t,x)dx +
∫ t

0

∫
Ω

B(y)u(s,x) · u(s,x) dx ds

+

∫ t

0

∫
Ω

Js(s,x) · u(s,x) dx ds

=
1

2

∫
Ω

A(y)u0(x) · u0(x) dx. �
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5. Homogenization. We assume that the material that occupies the domain Ω con-

tains periodic micro-structures characterized by matrices A, and B with periodically

oscillating spatial coefficients. We assume that the periodic structure of the material

is characterized by an elementary micro-structure with size α > 0 as seen in Figure

1. (The small parameter, generally denoted by ε in the literature, is denoted here by

α to avoid any confusion with permittivity, ε.) The parameter dependent constitutive

matrices (Aα,Bα) and the data (uα
0 ,J

α
s ) that depend on α, are assumed to have the

regularity needed by Lemma 1. Given α > 0, we obtain a family of electromagnetic fields

uα (indexed by α) which are solutions to the evolution problems

Aα(x)
∂

∂t
uα(t,x) +Bα(x)uα(t,x) = Fuα(t,x)− Jα

s (t,x) in (0, T )× Ω, (33a)

uα(0,x) = uα
0 (x) in Ω, (33b)

n× uα
1 (t,x) = 0 on (0, T )× ∂Ω. (33c)

Our aim is to obtain the asymptotic behavior of the solution uα when the periodicity

α goes to zero. This requires understanding the asymptotic behavior of the initial data

and of the source which depend on α. We make the following assumptions of strong

convergence on the data. Assume:{
uα
0 −→ uL

0 in V (Ω),

Jα
s −→ J L

s in W 1,1(0, T ;L2(Ω;Rn)).
(34)

Thus, we aim to obtain a homogenized version of problem (20) in which an ordinary

differential equation (ODE) or systems of ODEs describe the hysteretic part of the po-

larization and magnetization terms instead of homogenized electric and magnetic suscep-

tibility kernels as in [8]. As discussed in Section 3, these two approaches are equivalent

in the continuous setting. However, in the discrete setting, the numerical discretizations

and computational simulations of the limit model are different in the two approaches.

The ODE approach involves the construction of volume discretizations like the finite

difference and finite element approaches, while the approach with susceptibility kernels

requires the discretizations of convolutions.

5.1. Periodic geometry. We assume here that the micro-structure is of cubic form.

Denote by Y = (0, 1)3 the reference cell. For a.e. z ∈ R3 let [z] be the unique element

belonging to Z3 such that z− [z] ∈ Y , so that we may write z = [z]+{z} for a.e. z ∈ R3.

Consequently, for all α > 0, we get the unique decomposition

x = α([
x

α
] + {x

α
}) for a.e. x ∈ R

3. (35)

To be consistent with this geometry, the constitutive parameter matrices (Aα,Bα) are

assumed to be periodic with period α; more precisely, we assume that according to the

previous decomposition there exists two matrices (A,B) such that

Aα(x) = A({x
α
}) , Bα(x) = B({x

α
}) for a.e. x ∈ R

3. (36)
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5.2. Periodic unfolding operator. We study the limit, when α goes to 0, of the family

uα, by using the periodic unfolding method [11]. Set

Ξα =
{
ξ ∈ Z

3 | α(ξ + Y ) ⊂ Ω
}
, Ω̂α = interior

( ⋃
ξ∈Ξα

α(ξ + Y )
)
.

The periodic unfolding operator Tα : v ∈ L2(Ω;Rm) −→ L2(Ω× Y ;Rm) is defined by

Tα(v)(x,y) =

⎧⎨⎩ v(α[
x

α
] + αy) for a.e. (x,y) ∈ Ω̂α × Y,

0 otherwise.

Hence the periodicity of the constitutive parameters yields

Tα(Aα)(x,y) = A(y), Tα(Bα)(x,y) = B(y) a.e. in Ω̂α × Y. (37)

For our purpose all functions defined in L2(Ω) are extended by 0 outside Ω and we

denote by H1
per(Y ) the space of periodic functions with vanishing mean value. We refer

the reader to [8] for discussion of properties of the operator Tα, which are essential for

obtaining the limiting model.

Notation. Recall n = 3(2+NE+NH). LetN = n/3. We extend to RN some notation

defined in R3. Let v = (v1,v2,v3,v4)
T , where v1 is synonymous with an electric field,

E, v2 with polarization P, v3 with H and v4 with M. To be precise, for � = 1, 3, v� ∈ R3,

v2 = (v2,�)
NE

�=1 ∈ R3NE ,v2,� ∈ R3, v4 = (v4,�)
NH

�=1 ∈ R3NH , with v4,� ∈ R3. Next, define

w = (w1,w2, w3,w4)
T with w1, w3 ∈ R,w2 = (w2,�)

NE

�=1 ∈ RNE , with w2,� ∈ R for

� = 1, . . . , NE , and w4 = (w4,�)
NH

�=1 ∈ RNH , with w4,� ∈ R for � = 1, . . . , NH . Then we

define

curl v := (curl v�)
4
�=1, (38)

div v := (div v�)
4
�=1, (39)

n× v := (n× v�)
4
�=1, (40)

∇w := (∇w1,∇w2,∇w3,∇w4, )
T , (41)

where for v2 (P) and v4 (H) the curl, divergence, cross product and gradient are defined

component wise. For example, curl v2 = (curl v2,�)
NE

�=1. The other quantities are defined

in a similar fashion.

For α > 0, let uα be the solution to (33); as established in Lemma 1. Then uα satisfies

the uniform bound

||uα||L∞(0,T ;V (Ω)) + ||du
α

dt
||L∞(0,T ;L2(Ω;Rn)) ≤ CeC1t(||Jα

s ||W 1,1(0,T ;L2(Ω;Rn)) + ||uα
0 ||V (Ω))

(42)

from which we will prove the convergence of the family uα and identify its limit.

Theorem 5.1. Let Aα ∈ L∞(Ω;Rn2

) and Bα ∈ L∞(Ω;Rn2

) be two matrix sequences

given by (21) and (22), respectively, with Aα symmetric and uniformly coercive. Assume

that the initial condition uα
0 ∈ V(Ω) and the source Jα

s ∈ W 1,1(0, T ;L∞(Ω;Rn)). Let



COMPUTING PARAMETERS OF COMPOSITE ELECTROMAGNETIC MATERIALS 723

uα be the solution to the Maxwell problem (33). Then, there exist three fields

uL ∈ W 1,∞(0, T ;L2(Ω;Rn)) ∩ L∞(0, T ;V(Ω)), (43)

ūL ∈ W 1,∞(0, T ;L2(Ω;H1
per(Y ;RN ))), (44)

u
L ∈ L∞(0, T ;L2(Ω;H1

per(Y ;Rn))), divy(u
L
) = 0, (45)

which are limits of the following sequences:

uα ⇀ uL weakly ∗ in L∞(0, T ;V(Ω)), (46)

Tα(uα) −→ uL +∇yū
L strongly in H1(0, T ;L2(Ω× Y ;Rn)), (47)

Tα(curlxuα
j ) −→ curlxu

L
j + curlyu

L
j , j = 1, 3 strongly in L2((0, T )× Ω× Y ;Rn), (48)

which solve the evolution problem:

A(y)
∂

∂t
(uL(t,x) +∇yū

L(t,x,y)) +B(y)(uL(t,x) +∇yū
L(t,x,y))

= Fxu
L(t,x) + Fyu

L
(t,x,y)− J L

s (t,x) in (0, T )× Ω× Y,

(49a)

uL(0) = uL
0 in Ω× Y, ūL(0) = 0, (49b)

n× uL
1 = 0 on (0, T )× ∂Ω. (49c)

Proof. The proof involves three steps: 1) establishing weak convergence of the family

uα, Tα(uα), Tα(curlxuα
j ), 2) establish the limit of the evolution problem, and 3) establish

strong convergence. These steps can be developed using ideas and tools presented in [8].

Problem (49) has a unique solution uL, ūL,u
L
. The field uL +∇yū

L and its derivative

with respect to time satisfy a conservation law analogous to (2):

1

2

∫
Ω×Y

A(y)(uL(t,x) +∇yū
L(t,x,y)) · (uL(t,x) +∇yū

L(t,x,y))

+

∫ t

0

∫
Ω×Y

B(y)(uL(s,x) +∇yū
L(s,x,y)) · (uL(s,x) +∇yū

L(s,x,y)) ds

+

∫ t

0

∫
Ω

Js · uL(s) ds =
1

2

∫
Ω

A(0,y)uL
0 (x) · uL

0 (x).

(50)

�
We can rewrite Theorem 5.1 in vector form as follows. Assuming the conditions of

Theorem 5.1 hold, then, there exist three sets of fields

EL ∈ W 1,∞(0, T ;L2(Ω;R3)) ∩ L∞(0, T ;H0(curl,Ω)), (51)

PL ∈ W 1,∞(0, T ;L2(Ω;R3NE )) ∩ L∞(0, T ; (H0(curl))
NE ), (52)

HL ∈ W 1,∞(0, T ;L2(Ω;R3)) ∩ L∞(0, T ;H(curl,Ω)), (53)

ML ∈ W 1,∞(0, T ;L2(Ω;R3NH )) ∩ L∞(0, T ; (H(curl,Ω))NH ), (54)
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the set

ĒL, H̄L ∈ W 1,∞(0, T ;L2(Ω;H1
per(Y ;R3))), (55)

P̄L ∈ W 1,∞(0, T ;L2(Ω;H1
per(Y ;R3NE ))), (56)

M̄L ∈ W 1,∞(0, T ;L2(Ω;H1
per(Y ;R3NH ))), (57)

and finally

E
L
,H

L
∈ L∞(0, T ;L2(Ω;H1

per(Y ;R3))), divy(E
L
) = 0, divy(H

L
) = 0, (58)

P
L
∈ L∞(0, T ;L2(Ω;H1

per(Y ;R3NE ))), divy(P
L
) = 0, (59)

M
L
∈ L∞(0, T ;L2(Ω;H1

per(Y ;R3NH ))), divy(M
L
) = 0, (60)

which are limits of the following sequences:

Eα ⇀ EL weakly ∗ in L∞(0, T ;H0(curl,Ω))), (61)

Pα ⇀ PL weakly ∗ in L∞(0, T ; (H0(curl,Ω))
NE ), (62)

Hα ⇀ HL weakly ∗ in L∞(0, T ;H(curl,Ω)), (63)

Mα ⇀ ML weakly ∗ in L∞(0, T ; (H(curl,Ω))NH ), (64)

and

Tα(Eα) −→ EL +∇yĒ
L strongly in H1(0, T ;L2(Ω× Y ;R3)), (65)

Tα(Pα) −→ PL +∇yP̄
L strongly in H1(0, T ;L2(Ω× Y ;R3NE )), (66)

Tα(Hα) −→ HL +∇yH̄
L strongly in H1(0, T ;L2(Ω× Y ;R3)), (67)

Tα(Mα) −→ ML +∇yM̄
L strongly in H1(0, T ;L2(Ω× Y ;R3NH )), (68)

with

Tα(curlxEα) −→ curlxE
L + curlyE

L
strongly in L2((0, T )× Ω× Y ;R3), (69)

Tα(curlxHα) −→ curlxH
L + curlyH

L
strongly in L2((0, T )× Ω× Y ;R3), (70)
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which solve the following evolution equations in (0, T )× Ω× Y :

ε0ε∞(y)
∂

∂t

(
EL(t,x) +∇yĒ

L(t,x,y)
)
+ SE

5 (y)(EL(t,x) +∇yĒ
L(t,x,y))

+ SE
4 (y)(PL(t,x) +∇yP̄

L(t,x,y)) = curlxH
L(t,x) + curlyH

L
(t,x,y)− J L

E (t,x),

(71a)

SE
1 (y)

∂

∂t
(PL(t,x) +∇yP̄

L(t,x,y)) + SE
3 (y)(EL(t,x) +∇yĒ

L(t,x,y))

+ SE
2 (y)(PL(t,x) +∇yP̄

L(t,x,y)) = 0,

(71b)

μ0μr(y)
∂

∂t
(HL(t,x) +∇yH̄

L(t,x,y)) + SH
5 (y)(HL(t,x) +∇yH̄

L(t,x,y))

+ SH
4 (y)(ML(t,x) +∇yM̄

L(t,x,y)) = −curlxE
L(t,x) + curlyE

L
(t,x,y)− J L

H (t,x),

(71c)

SH
1 (y)

∂

∂t
(ML(t,x) +∇yM̄

L(t,x,y)) + SH
3 (y)(HL(t,x) +∇yH̄

L(t,x,y))

+ SH
2 (y)(ML(t,x) +∇yM̄

L(t,x,y)) = 0,

(71d)

along with the initial conditions

EL(0) = EL
0 in Ω× Y, ĒL(0) = 0, (72)

PL(0) = PL
0 in Ω× Y, P̄L(0) = 0, (73)

HL(0) = HL
0 in Ω× Y, H̄L(0) = 0, (74)

ML(0) = ML
0 in Ω× Y, M̄L(0) = 0, (75)

and the boundary condition

n×EL = 0 on (0, T )× ∂Ω. (76)

5.3. Limit model: Computation of correctors and effective matrices. In this section

we show that the limit solution uL given by (6) solves a global Maxwell problem posed

in (0, T ) × Ω, while the correctors ūL and u
L

solve local diffusion problems posed in

(0, T )× Y .

Theorem 5.2. For α > 0, let Aα ∈ L∞(Ω;Rn2

), symmetric and uniformly coercive, and

Bα ∈ L∞(Ω;Rn2

), be two families of matrices indexed by α be given as in (36). Assume

that the initial condition uα
0 and the source Jα

s satisfy assumptions (34). Then, there

exists a unique limit electromagnetic field

uL = (E ,P,H,M)T ∈ W 1,∞(0, T ;L2(Ω;Rn)) ∩ L∞(0, T ;V (Ω))
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solution to the homogenized problem

A∂uL

∂t
(t,x) + BuL(t,x) +

∂

∂t

(∫ t

0

C(t− s)uL(s,x)

)
ds (77a)

= FuL(t,x)− J L
s (t,x)− J 0(t,x) in (0, T )× Ω,

uL(0) = uL
0 in Ω, (77b)

n× uL
1 = 0 on (0, T )× ∂Ω, (77c)

where A,B are effective matrices independent of the space variable x, J 0 is an extra

source which depends only upon the initial condition u0. The matrix

C ∈ W 1,1(0, T ;L∞(Ω;Rn2

))

is a new effective matrix incorporating additional polarization and magnetization (mem-

ory) effects that arises due to the homogenization.

Proof. We note that the effective constitutive laws involve convolution terms that were

not in the original model which arise due to the homogenization. The proof relies on

appropriate choices of test functions in the variational form (77). The complete proof

is based on additional preliminary lemmas presented in [8]. We present details of the

computation of the corrector terms here.

Computation of ūL: We consider the decompositions uL(t,x) = uL
k (t,x)ek, with the

initial condition at t = 0 given by u0(x) = uL
0,k(x)ek, where ek, k ∈ {1, 2, . . . , n} is the

canonical basis of Rn and introduce three families of elementary correctors (w̄A, w̄0, w̄)

(with value in RN ) which are solutions to different local diffusion problems posed in Y .

Since the matrices A and B are independent of t, the corrector w̄A ∈ H1
per(Y ;RN )

is independent of t, w̄0 ∈ W 2,1(0, T ;H1
per(Y ;RN )), and w̄ ∈ W 1,1(0, T ;H1

per(Y ;RN ))

depend on only one variable. They solve the following variational problems satisfied for

all v̄ ∈ H1
per(Y ;RN ):

• Corrector w̄0
k ∈ W 2,1(0, T ;H1

per(Y ;RN )), associated to the initial condition u(0, .),

solves∫
Y

A(y)∇yw̄
0
k(t,y) · ∇yv̄(y) dy +

∫
Y

∫ t

0

B(y)∇yw̄
0
k(s,y) · ∇yv̄(y) ds dy

=

∫
Y

A(y)ek · ∇yv̄(y) dy, ∀v̄ ∈ H1
per(Y ;Rn).

(78)

• Corrector w̄A
k ∈ H1

per(Y ;Rn), depends on operator A and is defined as

w̄A
k (y) = −w̄0

k(0,y), y ∈ Y. (79)

• The kernel w̄k ∈ W 2,1(0, T ;H1
per(Y ;RN ))∫

Y

A(y)∇yw̄k(t,y) · ∇yv̄(y) dy +

∫
Y

∫ t

0

B(y)∇yw̄k(s,y) · ∇yv̄(y) ds dy

= −
∫
Y

B(y)
(
ek +∇yw̄

A
k (y)

)
· ∇yv̄(y) ∀v̄ ∈ H1

per(Y ;RN ) a.e. in (0, T ).

(80)
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We note that the correctors w̄0
k and w̄k have higher regularity than stated. In particular,

we note that w̄0
k, w̄k ∈ C∞(0, T ;H1

per(Y ;RN )).

Next, there exists a corrector ūL ∈ W 2,1(0, T ;H1
per(Y ;RN )) that can be written as

ūL(t,x,y) = w̄A
k (y)uL

k (t,x) + w̄0
k(t,y)u

L
0,k(x) +

∫ t

0

w̄k(s,y)u
L
k (s,x)ds, (81)

and ūL(0) = 0, which can be deduced by substituting (79) into (81).

Finally, the effective matrices can be computed from the following formulas:

A =

∫
Y

A(y) dy, A ∈ R
n2

, (82)

B =

∫
Y

B(y) dy, B ∈ R
n2

, (83)

C(t) =
∫
Y

C(t,y) dy, C ∈ W 1,1(0, T ;Rn2

), (84)

J 0 =
d

dt

(∫
Y

L
0(t,y)dy

)
u0(x), J 0 ∈ W 1,1(0, T ;L∞(Ω;Rn2

)), (85)

with the columns of the matrices given as

Ak(y) = A(y)(ek +∇yw̄
A
k (y)), (86)

Bk(y) = B
(
y)(ek +∇yw̄

A
k (y)

)
, (87)

Ck(t,y) = A(y)∇yw̄k(t,y) +

∫ t

0

B(y)∇yw̄k(s,y) ds, (88)

L
0
k(t,y) = A(y)∇yw̄

0
k(t,y) +

∫ t

0

B(y)∇yw̄
0
k(s,y) ds. (89)

For the computation of the field u
L
we refer the reader to [8]. �

Theorem 5.1 suggests the formal asymptotic expansion

uα(x) = uL(x) +∇yū
L(x,

x

α
) + αu

L
(x,

x

α
) · · · . (90)

Hence the computation of the term of order 0 (with respect to α) has to take into

account the first corrector ūL. Under assumptions of Theorem 5.2 and by following the

same approach as in [11], we obtain the strong convergences of the electromagnetic field

uα − (uL + Uα(∇yū
L)) −→ 0 in H1(0, T ;L2(Ω;Rn)), (91)

curlxu
α − (curlxu

L + Uα(curlyu
L
)) −→ 0 in L2((0, T )× Ω;Rn), (92)

where Uα is the averaging operator

Uα(v)(x) =
1

|Y |

∫
Y

v
(
α[

x

α
] + αz, {x

α
}
)
dz ∀v ∈ L2(Ω× Y ).
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6. Special cases of composite materials. In this section, we give examples of

different models for the micro-structure of the composite material. We will consider the

cases of models given by first and second order evolution equations for the polarization

and/or magnetization. Below, we describe some popular ODE models that are used to

model complex dielectrics. The constitutive ODE laws in (10) and (11) are sufficiently

general to include models based on differential equations and systems of differential

equations whose solutions can be expressed through fundamental solutions (in general

variation-of-parameters representation) [4].

6.1. Debye model for orientational polarization. Assume M(t,x) = 0. The choice of

the kernel function

νE(x, t) =
ε0(εs(x)− ε∞(x))

τ (x)
e−t/τ(x), (93)

in the dielectric corresponds to the differential equation of the Debye model for orienta-

tional or dipolar polarization [4, 19] given by

τ (x)
∂PR

∂t
(t,x) + PR(t,x)− ε0(εs(x)− ε∞(x))E(t,x) = 0. (94)

In this case NE = 1. Thus P = PR = P(0). The matrices SE
1 , SE

2 , and SE
3 are as given

in (17), with aE1 (x) = τ (x), aE0 (x) = 1, and βE
0 (x) = −ε0(εs(x)− ε∞(x)).

Here, εs is the static relative permittivity. The presence of instantaneous polarization

is accounted for in this case by the coefficient ε∞ in the electric flux equation. That is,

εr = ε∞ in the dielectric, and εr = 1 in air. The remainder of the electric polarization

is seen to be a decaying exponential, driven by the electric field, less the part included

in the instantaneous polarization. This model was first proposed by Debye [13], to

model the behavior of materials whose molecules possess permanent dipole moments.

The magnitude of the polarization term P represents the degree of alignment of these

individual moments. The choice of coefficients in (94) gives a physical interpretation to

εs and ε∞ as the relative permittivities of the medium in the limit of the static field

and very high frequencies, respectively. In the static case, we have Pt = 0, so that

P = ε0(εs − ε∞)E and D = εsε0E. For very high frequencies, τPt dominates P so that

P ≈ 0 and D = ε∞ε0E.

6.2. Lorentz model for electronic polarization. Again assume that M(t,x) = 0. The

Lorentz model for electronic polarization [18] which, in differential form, is represented

with the second order equation:

∂2PR

∂t2
+ λ(x)

∂PR

∂t
+ ω2

0(x)PR = ε0ω
2
p(x)E. (95)

Here NE = 2. P = (P(0),P(1))T , In this case, the matrices SE
1 , SE

2 , and SE
3 are given to

be

SE
1 = I2; SE

2 (x) =

[
0 −1

ω2
0(x) λ

]
; SE

3 =

[
0

ε0ω
2
p(x)

]
. (96)

In (95), ωp is called the plasma frequency and is defined to be

ωp(x)
2 = ω0(x)

2(εs(x)− ε∞(x)). (97)
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A simple variation of constants solution [4] yields the correct kernel function

νE(t,x) =
ε0ω

2
p(x)

ν0(x)
e−λ(x)t/2 sin (ν0(x)t), (98)

ν0(x) =

√
ω2
0(x)−

λ2(x)

4
. (99)

6.3. The Lorentz metamaterial model. By metamaterial, we mean a class of artificial

materials that have simultaneous negative permittivity and permeability (negative re-

fractive index) [22]. These are also known as left-handed materials (LHMs). The Lorentz

metamaterial model in differential form is represented with the second order equations

∂2PR

∂t2
+ λE(x)

∂PR

∂t
+ ω2

0,E(x)PR = ε0ω
2
p,E(x)E, (100)

∂2MR

∂t2
+ λH(x)

∂MR

∂t
+ ω2

0,H(x)MR = ε0ω
2
p,H(x)H. (101)

Here NE = NH = 2, P = (P(0),P(1))T , M = (M(0),M(1))T and, matrices SV
1 , SV

2 , and

SV
3 are as in (96) with appropriate V labels on the parameters. The matrices SE

1 , SE
2 ,

and SE
3 are given to be

SE
1 = I2; SE

2 (x) =

[
0 −1

ω2
0,E(x) λ

]
SE
3 =

[
0

ε0ω
2
p,E(x)

]
(102)

and matrices SH
1 , SH

2 , and SH
3 are given to be

SH
1 = I2; SH

2 (x) =

[
0 −1

ω2
0,H(x) λ

]
SE
3 =

[
0

ε0ω
2
p,H(x)

]
. (103)

For example, when λE = λH = 0 and ωp,E = ωp,H =
√
2ω, the refractive index RI = −1.

If the frequencies ω0,E = ω0,H = 0, then the model is called a Drude metamaterial.

7. Homogenization for Debye mixtures. In this section, we consider the case of

a composite material with inclusions described by the Debye model given in Section 6.1

in more detail. For a mixture of two Debye materials (both host and inclusions described

as Debye media), we develop the homogenized limit model here. In this case, NE = 1,

M = 0, and n = 9. The matrices A and B are

A(y) =

⎡⎢⎢⎣
ε0ε∞(y) 0 0

0 τ (y) 0

0 0 μ0μr(y)

⎤⎥⎥⎦⊗ I3, (104)

while the matrix B is

B(y) =

⎡⎢⎢⎢⎢⎣
ε0(εs(y)− ε∞(y))

τ (y)
− 1

τ (y)
0

−ε0(εs(y)− ε∞(y)) 1 0

0 0 0

⎤⎥⎥⎥⎥⎦⊗ I3. (105)
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Theorem 5.1 for this case gives us the following limits. There exist three sets of fields,

EL ∈ W 1,∞(0, T ;L2(Ω;R3)) ∩ L∞(0, T ;H0(curl,Ω)), (106)

PL ∈ W 1,∞(0, T ;L2(Ω;R3)) ∩ L∞(0, T ;H0(curl)), (107)

HL ∈ W 1,∞(0, T ;L2(Ω;R3)) ∩ L∞(0, T ;H(curl,Ω)), (108)

the set

ĒL ∈ W 1,∞(0, T ;L2(Ω;H1
per(Y ;R3))), (109)

P̄L ∈ W 1,∞(0, T ;L2(Ω;H1
per(Y ;R3))), (110)

H̄L ∈ W 1,∞(0, T ;L2(Ω;H1
per(Y ;R3))), (111)

and finally

E
L
∈ L∞(0, T ;L2(Ω;H1

per(Y ;R3))), divy(E
L
) = 0, (112)

P
L
∈ L∞(0, T ;L2(Ω;H1

per(Y ;R3))), divy(P
L
) = 0, (113)

H
L
∈ L∞(0, T ;L2(Ω;H1

per(Y ;R3))), divy(H
L
) = 0, (114)

which are limits of the following sequences:

Eα ⇀ EL weakly ∗ in L∞(0, T ;H0(curl,Ω))), (115)

Pα ⇀ PL weakly ∗ in L∞(0, T ;H0(curl,Ω)), (116)

Hα ⇀ HL weakly ∗ in L∞(0, T ;H(curl,Ω)), (117)

and

Tα(Eα) −→ EL +∇yĒ
L strongly in H1(0, T ;L2(Ω× Y ;R3)), (118)

Tα(Pα) −→ PL +∇yP̄
L strongly in H1(0, T ;L2(Ω× Y ;R3)), (119)

Tα(Hα) −→ HL +∇yH̄
L strongly in H1(0, T ;L2(Ω× Y ;R3)), (120)

and

Tα(curlxEα) −→ curlxE
L + curlyE

L
strongly in L2((0, T )× Ω× Y ;R3), (121)

Tα(curlxHα) −→ curlxH
L + curlyH

L
strongly in L2((0, T )× Ω× Y ;R3), (122)
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which solve the following evolution equations in (0, T )× Ω× Y :

ε0ε∞(y)
∂

∂t
(EL(t,x) +∇yĒ

L(t,x,y)) +
ε0

τ (y)
(εs(y)− ε∞(y)(EL(t,x) +∇yĒ

L(t,x,y))

− 1

τ (y)
(PL(t,x) +∇yP̄

L(t,x,y)) = curlxH
L(t,x) + curlyH

L
(t,x,y)− J L

E (t,x),

(123a)

τ (y)
∂

∂t
(PL(t,x) +∇yP̄

L(t,x,y)) + (PL(t,x) +∇yP̄
L(t,x,y))

− ε0(εs(y)− ε∞(y))(EL(t,x) +∇yĒ
L(t,x,y)) = 0,

(123b)

μ0μr(y)
∂

∂t
(HL(t,x) +∇yH̄

L(t,x,y)) = −curlxE
L(t,x) + curlyE

L
(t,x,y)− J L

H (t,x),

(123c)

along with the initial conditions

EL(0) = EL
0 in Ω× Y, ĒL(0) = 0, (124)

PL(0) = PL
0 in Ω× Y, P̄L(0) = 0, (125)

HL(0) = HL
0 in Ω× Y, H̄L(0) = 0, (126)

and the boundary condition

n×EL = 0 on (0, T )× ∂Ω. (127)

The homogenized model is then computed from Theorem 5.2.

7.1. Homogenization model in two dimensions. Let x = (x1, x2, x3)
T . We now assume

our problem to possess uniformity in the x2-direction. Thus, we assume all derivatives

with respect to x2 (or y2) to be zero. In this case Maxwell’s equations decouple into

two different modes, the TE and TM modes. Here, we are interested in the TEy mode.

The TEy mode involves the components Ex, Ez for the electric field, the components

Px, Pz for the electric polarization field and the component Hy of the magnetic field.

As mentioned earlier, there are no additional magnetic effects in the Debye model and

M = 0. In the rest of this section we will denote x = (x1, x3)
T .

In a similar manner to the three dimensional case, we may construct matricesATE, and

BTE, that represent the constitutive relations in two dimensions. Thus the constitutive

matrices are

ATE =

[
ATE

11 (y) 0

0 μ0μr

]
; BTE =

[
BTE

11 (y) 0

0 0

]
. (128)

ATE
11 (y) =

[
ε0ε∞(y) 0

0 τ (y)

]
⊗ I2; BTE

11 (y) =

⎡⎢⎢⎣
ε0(εs(y)− ε∞(y))

τ (y)
− 1

τ (y)

−ε0(εs(y)− ε∞(y)) 1

⎤⎥⎥⎦⊗ I2.

(129)
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The homogenized solution for the TE mode is obtained from the formal asymptotic

expansion as

Eα
x1

= Ex1
+ ∂y1

ū1(x,y) + . . . , (130a)

Eα
x3

= Ex3
+ ∂y3

ū1(x,y) + . . . , (130b)

Pα
x1

= Px1
+ ∂y1

ū2(x,y) + . . . , (130c)

Pα
x3

= Px3
+ ∂y3

ū2(x,y) + . . . , (130d)

Hα
x2

= Hx2
+ ∂y2

ū3(x,y) + . . . . (130e)

Hence the homogenized electric field and electric polarization for the TE mode can be

expanded as

Eα = E+∇yū1(x,y) + . . . , (131)

Pα = P+∇yū2(x,y) + . . . , (132)

where the gradient operator in this case is ∇y = (∂y1
, ∂y3

)T . Therefore we need to solve

for ū1(x,y), and ū2(x,y), which in turn only depend on the first two components of w̄A
k ,

w̄0
k, and w̄k, for k = 1, 2, 3, 4. We now assume the same notation of the corrector to

mean the first two components.

Let us again denote by Y the reference cell of the periodic structure that occupies

Ω ⊂ R2. The construction of the two dimensional homogenized problem involves solving

for the corrector sub terms w̄A
k ∈ H1

per(Y ;R2), w̄k ∈ W 1,1(0, T ;H1
per(Y ;R2)), and w̄0

k ∈
W 2,1(0, T ;H1

per(Y ;R2)), solutions to the corrector equations

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(i)

∫
Y

ATE
11 (y)∇yw̄

0
k(t,y) · ∇yv̄(y)dy

+

∫
Y

∫ t

0

BTE
11 (y)∇yw̄

0
k(s,y) · ∇yv̄(y)ds dy

=

∫
Y

ATE
11 (y)ek · ∇yv̄(y) dy,

(ii) w̄A
k (y) = −w̄0

k(0,y), y ∈ Y,

(iii)

∫
Y

ATE
11 (y)∇yw̄k(t,y) · ∇yv̄(y)dy

+

∫
Y

∫ t

0

BTE
11 (y)∇yw̄k(s,y) · ∇yv̄(y) ds dy

= −
∫
Y

BTE
11 (y)

{
ek +∇yw̄

A
k

}
· ∇yv̄(y) dy

(133)



COMPUTING PARAMETERS OF COMPOSITE ELECTROMAGNETIC MATERIALS 733

∀v̄ ∈ H1
per(Y ;R2) and ek, k = 1, 2, 3, 4 are the basis vectors in R4, i.e., e1 = [1, 0, 0, 0]T , e2

= [0, 1, 0, 0]T , e3 = [0, 0, 1, 0]T , e4 = [0, 0, 0, 1]T . Once we have solved for the corrector

terms, we can then construct the homogenized matrices from

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(i) (ATE
11 )k =

∫
Y

ATE
11 (y)

{
ek +∇yw̄

A
k (y)

}
dy,

(ii) (BTE
11 )k =

∫
Y

BTE
11 (y)

{
ek +∇yw̄

A
k (y)

}
dy,

(iii) (CTE
11 )k =

∫
Y

ATE
11 (y)∇yw̄k(t,y) dy +

∫
Y

∫ t

0

BTE
11 (y)∇yw̄k(s,y) ds dy,

(134)

where (ATE
11 )k, (BTE

11 )k, and (CTE
11 )k are the kth columns of the matrices ATE

11 ,BTE
11 , and

CTE
11 , respectively, and the homogenized matrices are given as

ATE =

[
ATE

11 0

0 μ0μr

]
;

BTE =

[
BTE
11 0

0 0

]
;

CTE =

[
CTE
11 0

0 0

]
.

(135)

The homogenized model is then computed from Theorem 5.2 with appropriate assump-

tions and simplifications for the two dimensional case.

7.2. Numerical example: Varying relative permittivity. We consider the simple exam-

ple of a composite material which possesses circular micro-structures in two dimensions,

involving a cell problem in the reference cell Y = [0, 1]× [0, 1], in which the value of the

infinite frequency relative permittivity ε∞ is given as

εr(x) =

⎧⎨⎩εi = 2.7 if x ∈ S,

εe = 1.03 if x ∈ Y/S̄.
(136)

The composite and the reference cell are depicted in Figure 2. In this test case, we will

assume that εs = ε∞, and τ is constant over the entire dielectric material. In this case,

the polarization P = 0 and the homogenized effective permittivity is the same as that

developed in Section 7 in our previous work [3]. We repeat some of the main results here,

and refer the reader to [3] for details of the numerical simulations.
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Fig. 2. (Left) Periodic composite material having inclusions with a
circular micro-structure and with periodicity α. (Right) The refer-
ence cell Y = [0, 1]× [0, 1] with different relative permittivities inside
and outside the circular inclusion.

Numerical simulation using continuous finite elements is performed on a 51×51 nodes

mesh grid to solve the corrector system (133) and then to compute the homogenized ma-

trices (134). Since there is no polarization in this problem, we only need to compute the

first component of the corrector w̄A
k , k = 1, 2, 3, 4 in order to compute the homogenized

electric field in (131) and to compute the effective permittivity.

We define the inclusion volume fraction f as the ratio

f =
area of inclusion

area of domain Y
. (137)

In Figure 3, we plot the relative effective permittivity versus the inclusion volume

fraction for our periodic unfolding method and other theoretical mixture formulas [30,31],

which are valid for the case of circular inclusions. The prediction of the effective relative

permittivity of the composite mixture εeff by different mixture formulas is given as follows:

εeff,MG = εe + 2fεe
εi − εe

εi + εe − f(εi − εe)
, (Maxwell Garnett), (138)

(1− f)
εe − εeff,B

εe + εeff,B
+ f

εi − εeff,B

εi + εeff,B
= 0, (Bruggeman), (139)

εeff,CP − εe
εe + εeff,CP + 2(εeff,CP − εe)

− εi − εe
εe + εi + 2(εeff,CP − εe)

= 0, (Coherent potential),

(140)

εeff,max = fεi + (1− f)εe, (Max Weiner bound), (141)

εeff,min =
εiεe

fεe + (1− f)εi
, (Min Weiner bound). (142)
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Fig. 3. Effective relative permittivities for periodic mixtures with
circular inclusions against the corresponding inclusion volume frac-
tion f . Effective values computed with the periodic unfolding
method and various mixture formulas are plotted.

As seen from Figure 3, the mixture formulas given by Maxwell Garnett, Bruggeman, and

the coherent potential along with the numerical simulations from our periodic unfolding

method all produce effective permittivites that lie within the maximum and minimum

Weiner bounds.

8. Conclusions. In this paper, we have presented an homogenization method based

on the periodic unfolding technique for computing effective properties of a mixture of

linear dispersive materials. Models for linear dispersive electromagnetic materials (ma-

terials with memory effects) can be built in a variety of ways. In [8], the constitutive

laws for linear dispersive media included convolutions in time of electric and magnetic

fields with appropriate kernels modeling the memory effects in the materials. In this

paper, we explicitly model the evolution of the polarization and magnetization in time

using ODEs forced by the electric field for the polarization, and by the magnetic field

for the magnetization. The problem is to homogenize a hybrid system of PDEs-ODEs

collectively given by Maxwell’s PDEs combined with ODEs for the dynamic evolution of

the dispersive medium’s polarization and magnetization.

The method that we have presented in this paper is an alternate homogenization tech-

nique to the approach presented in [3, 8], in which the constitutive laws included convo-

lutions in time of electric and magnetic fields. The numerical computation of effective

parameters using our previous approach in [3] requires discretizing several convolutions

in time, and in that paper we employed a recursive convolution approach for computing

discrete homogenized susceptibility kernels.
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The advantage of the method presented in this paper is that the model for each

material in the mixture includes evolution equations that explicitly track the electric

polarization and magnetization in time, rather than the implicit inclusion of polarization

and magnetization via convolutions. Thus, the homogenized model has explicit equations

for the effective polarization and magnetization. However, even though the constitutive

laws for each material in the mixture are based on systems of ODEs, the homogenized

system can include convolutions in time that arise through the homogenization process

in addition to the systems of ODEs.
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