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SÉRGIO L. N. NEVES (Department of Mathematics, Unesp-IBILCE, 15054-000, São José do Rio
Preto-SP, Brazil)

Abstract. We consider the Laplace equation in the half-space satisfying a nonlinear

Neumann condition with boundary potential. This class of problems appears in a number

of mathematical and physics contexts and is linked to fractional dissipation problems.

Here the boundary potential and nonlinearity are singular and of power-type, respec-

tively. Depending on the degree of singularity of potentials, first we show a nonexistence

result of positive solutions in D1,2(Rn
+) with a Lp-type integrability condition on ∂Rn

+.

After, considering critical nonlinearities and conditions on the size and sign of potentials,

we obtain the existence of positive solutions by means of minimization techniques and

perturbation methods.

1. Introduction. In this paper we consider the problem⎧⎨
⎩
Δu = 0 in R

n
+,

∂u

∂ν
= a(x) u

|x|σ + g(u) on ∂Rn
+ \ {0},

(1.1)

where n ≥ 3, g(u) is a power-type nonlinearity, and σ > 0. We analyze two classes of the

weight a(x), namely a is a bounded function in R
n and the angular case a(x) = a

(
x
|x|

)
∈

C1(Sn−2,R). In the latter case the function a(ξ) (ξ ∈ Sn−2) is the angular part of the

potential.
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The problem (1.1) consists in an elliptic equation in the half-space with nonlinear

Neumann condition with a singular boundary potential. Elliptic problems with Neumann

boundary conditions (both linear and nonlinear) have been studied by several authors and

appear in various mathematical and physics contexts. For instance, harmonic functions

with Neumann boundary condition were considered in [5]. A study on harmonic functions

with nonlinear boundary conditions linked to boundary vortices in thin magnetic films

can be found in [21, 22]. Lewy [24] considered certain nonlinear boundary conditions

connected to the study of hydrodynamical fluids. For subjects related to the study

of Peierls-Nabarro and Benjamin-Ono equations and the Steklov problem, the reader is

referred to [29,30]. In turn, singular potentials appear in a number of physical situations,

such as quantum cosmology, nonrelativistic quantum mechanics, and molecular physics

(see, e.g., [20], [23], [17]).

When σ = 1 the problem is more challenging and we have some kind of criticality.

For instance, for general a
(

x
|x|

)
�≡ 0, the potential does not belong to the associated

Kato class for (1.1) and has the same homogeneity degree of the equation. This kind of

potential plays a central role on the qualitative properties of this class of equations and

the solutions may inherit its singular behavior.

The equation (1.1) can also be critical with respect to the growth of the nonlinear

part g(u), indeed there is a balance between σ and the rate of growth of g in the case

of a homogeneous nonlinearity as can be seen from Theorem 2.1. Moreover, when σ = 1

and g(u) = u
n

n−2 the equation is invariant with respect to the Kelvin transform, more

precisely, in this case if u is a solution of (1.1), then v(x) = 1
|x|n−2 u

(
x

|x|2
)
also yields a

solution.

Another important feature of (1.1) is that it is related to the fractional Laplacian in

the sense that it is formally equivalent to the equation

(−Δ)
1
2 u = a(x)

u

|x| + u
n

n−2 , R
n\{0},

via the so-called Caffarelli-Silvestre extension (see [10]). Notice that now one can see

clearly the equality between the degree of homogeneity of the potential and the order of

the differential operator. Nonlinear elliptic equations with the fractional Laplacian have

been the subject of intense research in the last years; see for example [9, 10, 26].

Existence, regularity, symmetry and continuation property of solutions for elliptic

equations with singular potential and fractional Laplacian can be found in [11, 14, 15].

The authors of [7] considered fractional elliptic equations with a(x) ≡ 0 and concave-

convex nonlinearities. For the Laplacian case and Hardy and multipolar anisotropic

potentials in the whole space, we quote the works [16, 17] whose approaches rely on

variational methods combined with Hardy-type inequalities. These issues also have been

considered in [18, 19] via contraction arguments and suitable singular weighted spaces.

Here we deal with (1.1) in essentially two ways. First we consider the case a(x) =

a
(

x
|x|

)
∈ C1(Sn−2,R) and prove an existence result using minimization techniques. In

the other case, when a(x) is a bounded function, we consider the problem with a small
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parameter multiplying the function a and we apply perturbation methods. In this case it

is important to know some properties of the unperturbed problem, mainly the solutions

of the linearized equation (see Lemma 4.1). This characterization is important on its

own, see for instance [13], and can be applied to other problems that are close to the

unperturbed problem in a suitable sense.

The paper is structured as follows. In Section 2 we deduce some necessary conditions

for the existence of nontrivial solutions. In Section 3 we prove an existence result using

a minimization procedure and finally in Section 4 we prove an existence result by means

of perturbation methods.

Notation.

R
n
+ = {x = (x′, xn) ∈ R

n | x′ ∈ R
n−1, xn > 0};

∂Rn
+ = {x = (x′, xn) ∈ R

n | x′ ∈ R
n−1, xn = 0} ∼= R

n−1;

Rn
+ = R

n
+ ∪ ∂Rn

+;

BR = {x ∈ R
n | |x| < R};

Sn = {x ∈ R
n+1 | |x| = 1};

D1,2
(
R

n
+

)
= the closure of C∞

c (Rn
+) in the norm ‖u‖ =

(∫
R

n
+
|∇u(x)|2dx

)1/2

;

2∗ = 2(n−1)
n−2 .

2. Nonexistence results. In this section we prove the following result.

Theorem 2.1. Consider the equation (1.1) with

a(x) = a

(
x

|x|

)
∈ C1(Sn−2,R).

(i) Suppose that σ = 1, g(t) = tp, and that the problem (1.1) admits a nontrivial

positive solution in D1,2(Rn
+) ∩ Lp+1(∂Rn

+); then p = n
n−2 .

(ii) Suppose that σ �= 1, g(t) = t
n

n−2 and that the function a(x) has a constant sign;

then the problem (1.1) admits only the trivial solution in the space D1,2(Rn
+) ∩

L2(∂Rn
+,

1
|x|σ ).

Proof. The proof follows from a Pohozaev-type argument. Let us consider 0 < r < R

and the domain Ωr,R = B+
R \B+

r , where B+
R = BR ∩ R

n
+. Thus

∂Ωr,R = S+
R ∪ S+

r ∪ Ar,R,

where S+
R = ∂BR ∩ R

n
+, S

+
r = ∂Br ∩ R

n
+, and Ar,R = (BR \Br) ∩ ∂Rn

+.

Multiplying (1.1) by u and integrating over Ωr,R, it follows that∫
Ωr,R

|∇u|2 =

∫
Ar,R

{
a(x)

|x|σ u2 + up+1

}
+

∫
S+
R∪S+

r

u
∂u

∂ν
. (2.1)
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And if we multiply (1.1) by ∇u · x and integrate over Ωr,R we get∫
Ωr,R

∇u · ∇ (∇u · x) =
∫
∂Ωr,R

∂u

∂ν
∇u · x (2.2)

−n− 2

2

∫
Ωr,R

|∇u|2 +
∫
∂Ωr,R

1

2
|∇u|2x · ν

=

∫
Ar,R

{
a(x)

|x|σ u (∇u · x) + up (∇u · x)
}
+

∫
S+
R∪S+

r

∂u

∂ν
∇u · x

(2.3)

−n− 2

2

∫
Ωr,R

|∇u|2 +
∫
∂Ωr,R

1

2
|∇u|2x · ν = −n− 1− σ

2

∫
Ar,R

a(x)

|x|σ u2 − n− 1

p+ 1

∫
Ar,R

up+1

+

∫
∂′Ar,R

1

2

a(x)

|x|σ u2x · ν′ + up+1

p+ 1
x · ν′ +

∫
S+
R∪S+

r

∂u

∂ν
∇u · x,

(2.4)

where ∂′Ar,R denotes the boundary of Ar,R in R
n−1 = ∂Rn

+ and ν′ denotes the unit outer

normal vector field on ∂′Ar,R. By (2.1) and (2.4) we have(
n− 2

2
− n− 1

p+ 1

)∫
Ar,R

up+1 +

(
σ − 1

2

)∫
Ar,R

a(x)

|x|σ u2 = −n− 2

2

∫
S+
R∪S+

r

u
∂u

∂ν∫
S+
R∪S+

r

{
1

2
|∇u|2x · ν − ∂u

∂ν
∇u · x

}
−
∫
∂′Ar,R

{
1

2

a(x)

|x|σ u2x · ν′ + up+1

p+ 1
x · ν′

}
.

(2.5)

In both cases, (i) and (ii), we have∫
R

n
+

|∇u|2 + |u| 2n
n−2 < +∞ and

∫
∂Rn

+

a(x)

|x|σ u2 + up+1 < +∞

and hence the integrals on the right hand side of (2.5) go to zero (for suitable sequences

rk → 0, Rk → +∞). Therefore(
n− 2

2
− n− 1

p+ 1

)∫
∂Rn

+

up+1 +

(
σ − 1

2

)∫
∂Rn

+

a(x)

|x|σ u2 = 0

and the result follows. �

3. Existence results via minimization. From now on we consider the problem⎧⎨
⎩
Δu = 0 in R

n
+,

∂u

∂ν
= a( x

|x| )
u
|x| + u

n
n−2 on ∂Rn

+ \ {0}.
(3.1)

Consider the bilinear form

Q(u, v) =

∫
R

n
+

∇u · ∇v −
∫
Rn−1

a(x)

|x| uv, u, v ∈ D1,2(Rn
+), (3.2)

and the associated quadratic one

Q(u) := Q(u, u).
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The existence of positive solutions to (3.1) is closely related to the sign of the following

quantity:

λ(a) = inf
u∈D1,2(Rn

+
)

u(·,0) �≡0

{
Q(u)∫
Rn−1

u2

|x|

}
. (3.3)

Our first existence result reads as follows.

Theorem 3.1. Suppose that λ(a) > 0 and max
Sn−2

{a} > 0. Then

inf
u∈D1,2(Rn

+
)

u(·,0) �≡0

⎧⎨
⎩ Q(u)

‖u(·, 0)‖
2
2∗
L2∗ (Rn−1)

⎫⎬
⎭

is achieved and therefore (3.1) has a positive solution.

To prove the above theorem we need some preliminary results. We shall argue as in

[6] and [28].

By Kato’s inequality one can see that λ(a) is well defined. Next we prove that when

λ(a) > 0 the quadratic form Q(u) defines a norm in D1,2(Rn
+).

Lemma 3.2. Suppose that λ(a) > 0; then
√
Q(u) defines an equivalent norm in D1,2(Rn

+).

Proof. By Kato’s inequality, it suffices to prove that there exists a constant C > 0

such that ∫
R

n
+

|∇u|2 � C

(∫
R

n
+

|∇u|2 −
∫
Rn−1

a(x)

|x| u2

)
. (3.4)

Let us suppose, by contradiction, that for every k ∈ N there is a uk ∈ D1,2(Rn
+), with

‖uk‖D1,2(Rn
+) = 1, such that

1 > k

(
1−

∫
Rn−1

a(x)

|x| u2
k

)
. (3.5)

From the definition of λ(a) we have

λ(a)

∫
Rn−1

u2
k

|x| � 1−
∫
Rn−1

a(x)

|x| u2
k. (3.6)

Since λ(a) > 0, by (3.5) and (3.6) we get∫
Rn−1

u2
k

|x| <
1

λ(a)k
. (3.7)

On the other hand, by (3.5) again, we have that

k − 1

k
<

∫
Rn−1

a(x)

|x| u2
k � (1 + ‖a‖∞)

∫
Rn−1

u2
k

|x| . (3.8)

Therefore, by (3.7) and (3.8) we obtain a contradiction. �
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We shall solve (3.1) via a minimization problem, more precisely

Sa = inf
u∈D1,2(Rn

+
)

u(·,0) �≡0

⎧⎨
⎩ Q(u)

‖u(·, 0)‖
2
2∗
L2∗ (Rn−1)

⎫⎬
⎭ . (3.9)

Proposition 3.3. Suppose that λ(a) > 0 and Sa < S0 where S0 is the best constant in

the trace inequality. Then the infimum in (3.9) is achieved.

Proof. Since λ(a) > 0, by Lemma 3.2 we have Sa > 0. Let us consider a minimizing

sequence uk for (3.9) such that ∫
Rn−1

|uk(x, 0)|2∗dx = 1. (3.10)

Since the problem is invariant under the scaling μ
n−2
2 u(μx), we can also assume that

∫
|x|<2

|uk(x, 0)|2∗dx =
1

2
. (3.11)

By Lemma 3.2 uk is bounded in D1,2(Rn
+), hence we can assume that uk converges

weakly to some u0 in D1,2(Rn
+) and that, for all v ∈ D1,2(Rn

+), we have∫
R

n
+

∇uk · ∇v −
∫
Rn−1

a(x)

|x| ukv = Sa

∫
Rn−1

|uk|2∗−1v + ok(1)‖v‖, (3.12)

by Ekeland’s variational principle.

By standard arguments, it suffices to show that uk ⇀ u0 �= 0 (see [28, Prop. 5.1]).

So, suppose, by contradiction, that uk ⇀ 0. In this case we claim that∫
|x|<1

|uk(x, 0)|2∗dx = ok(1). (3.13)

Let us assume (3.13) for a moment and consider φ ∈ C∞
c (Rn\{0}) such that φ ≡ 1 in

B2\B1. Notice that∫
R

n
+

∇uk · ∇(φ2uk)−
∫
R

n
+

|∇(φuk)|2 = −
∫
R

n
+

|∇φ|2|uk|2 = ok(1)

by the Rellich compactness theorem. Therefore, using (3.12) and Hölder’s inequality, we

get ∫
R

n
+

|∇(φuk)|2 −
∫
Rn−1

a(x)

|x| |φuk|2 � Sa

(∫
Rn−1

|φuk|2∗
) 2

2∗
+ ok(1). (3.14)

On the other hand, recalling that φ ∈ C∞
c (Rn\{0}) and using the Rellich compactness

theorem once more, we have

∫
R

n
+

|∇(φuk)|2 −
∫
Rn−1

a(x)

|x| |φuk|2 � S0

(∫
Rn−1

|φuk|2∗
) 2

2∗
+ ok(1), (3.15)
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and hence

S0

(∫
Rn−1

|φuk|2∗
) 2

2∗
� Sa

(∫
Rn−1

|φuk|2∗
) 2

2∗
+ ok(1)

(S0 − Sa)

(∫
Rn−1

|φuk|2∗
) 2

2∗
= ok(1)

(∫
1<|x|<2

|uk|2∗
) 2

2∗

= ok(1), (3.16)

which contradicts (3.11) and (3.13).

It remains to prove (3.13). For that, consider η ∈ C∞
c (B2) such that η ≡ 1 in B1 and

apply (3.12) to η2uk in order to obtain∫
R

n
+

|∇(ηuk)|2 −
∫
Rn−1

a(x)

|x| |ηuk|2 = Sa

∫
Rn−1

|uk|2∗−2|ηuk|2 + ok(1)

� Sa

(∫
B2

|uk|2∗
) 2∗−2

2∗
(∫

B2

|ηuk|2∗
) 2

2∗
+ ok(1)

� Sa

2
2∗−2
2∗

(∫
Rn−1

|ηuk|2∗
) 2

2∗
+ ok(1). (3.17)

On the other hand, we have

Sa

(∫
Rn−1

|ηuk|2∗
) 2

2∗
�

∫
R

n
+

|∇(ηuk)|2 −
∫
Rn−1

a(x)

|x| |ηuk|2. (3.18)

Therefore, by (3.17) and (3.18), it follows that

0 � Sa

(
1− 1

2
2∗−2
2∗

)(∫
Rn−1

|ηuk|2∗
) 2

2∗
� ok(1)

and, since η ≡ 1 in B1, (3.13) follows. The proof is now complete. �
Now we prove Theorem 3.1.

Proof of Theorem 3.1. Since maxSn−2{a} > 0 there exists some e0 ∈ Sn−2 such that

a(e0) > 0 and hence, for some 0 < r < 1, a0 = infBr(e0){a} > 0, where Br(e0) ⊂ R
n−1.

Then
a(x)

|x| � a0
1− r

= μ for all x ∈ Br(e0).

We can choose r > 0 small enough such that

μ =
a0

1− r
< μr, (3.19)

where μr is the square root of the first eigenvalue of −Δ in Br(e0) with Dirichlet boundary

condition. Now, using [26, Prop. 4.2], we can infer that

S(a) < S0.

Then, by Proposition 3.3, the infimum in (3.9) is achieved and therefore (3.1) has a

positive solution. �
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4. Existence results via perturbation methods. In this section we consider the

problem ⎧⎨
⎩
Δu = 0 in R

n
+,

∂u

∂ν
= εa(x)

|x| u+ u
n

n−2 on ∂Rn
+ \ {0},

(4.1)

where ε ∈ R is a small parameter and a ∈ L∞(Rn−1). Here our aim is to prove the

existence of positive solutions for (4.1) under some additional conditions on the function

a(x) using perturbation methods as in [2, 3, 12]; see also [4] for a nice exposition of the

subject.

The unperturbed problem, i.e., with ε = 0, is⎧⎨
⎩
Δu = 0 in R

n
+,

∂u

∂ν
= u

n
n−2 on ∂Rn

+,
(4.2)

and has the following family of solutions:

Uμ,ξ(x) =
1

μ
n−2
2

U

(
x− ξ

μ

)
, μ > 0 and ξ ∈ R

n−1, (4.3)

where

U(x) =

(
n− 2

(1 + xn)2 + |x′|2

)n−2
2

. (4.4)

It is known that all regular nonnegative solutions of (4.2) are of the form (4.3); see for

example [25].

In order to find positive solutions to (4.1) we consider the functional

Iε(u) =
1

2

∫
R

n
+

|∇u|2dx− 1

2∗

∫
∂Rn

+

u2∗
+ dx− ε

1

2

∫
∂Rn

+

a(x)

|x| u2dx

= I0(u)− ε
1

2
G(u). (4.5)

We have the following n-dimensional manifold of solutions to (4.2):

Z = {Uμ,ξ : μ > 0, ξ ∈ R
n−1}.

In order to apply the perturbation methods we need to prove that this manifold is non-

degenerate in the following sense.

Lemma 4.1. For every Uμ,ξ, the space of solutions of the linearized equation⎧⎪⎪⎨
⎪⎪⎩
Δv = 0 in R

n
+,

∂v

∂ν
= n

n−2U
2

n−2

μ,ξ v on ∂Rn
+,

v ∈ D1,2(Rn
+),

(4.6)

is spanned by the functions

∂

∂μ
Uμ,ξ,

∂

∂ξi
Uμ,ξ, i = 1, . . . , n− 1.

Moreover, the operator I ′′0 (Uμ,ξ) is Fredholm of index zero.
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Proof. We proceed as in [1] (see also [13]). Without loss of generality, we prove the

result for μ = 1
2 and ξ = 0. In this way the equation (4.6) becomes⎧⎪⎪⎪⎨

⎪⎪⎪⎩
Δv = 0 in R

n
+,

∂v

∂ν
=

n

2

1
1
4 + |x|2

v on ∂Rn
+,

v ∈ D1,2(Rn
+).

(4.7)

Now, as in [27], we use the conformal maps between R
n
+ and the unit ball B1, namely

Φ : B1 → R
n
+ ; x �→ Φ(x) =

x+ en
|x+ en|2

− 1

2
en (4.8)

Φ−1 : Rn
+ → B1 ; y �→ Φ−1(y) =

y + 1
2en

|y + 1
2en|2

− en. (4.9)

These maps induce the following isometries:

Φ∗ : D1,2(Rn
+) → H1(B1), (Φ∗)−1 : H1(B1) → D1,2(Rn

+), (4.10)

v �→ Φ∗v(x) =
v(Φ(x))

|x+ en|2
, u �→ (Φ∗)−1 u(y) =

u(Φ−1(y))

|y + 1
2en|2

, (4.11)

where we consider H1(B1) with the norm∫
B1

|∇v|2 + n− 2

2

∫
∂B1

v2dσ.

Thus, if v is any solution of (4.7), then u = Φ∗v ∈ H1(B1) is a weak solution of⎧⎨
⎩
Δu = 0 in B1,
∂u

∂ν
= u on ∂B1.

(4.12)

It is known that the space of solutions of (4.12) has dimension n and is spanned by the

coordinate functions u = yi for i = 1, . . . , n. Therefore, we get that the space of solutions

of (4.6) has dimension n and this finishes the first part of the proof.

Finally, to prove that the operator I ′′0 (Uμ,ξ) is Fredholm of index zero, one can proceed

as in [8, Lemma 2.3] and check that I ′′0 (Uμ,ξ) is a compact perturbation of the identity. �
Then we are in position to apply the following result.



708 LUCAS C. F. FERREIRA AND SÉRGIO L. N. NEVES

Proposition 4.2 ([4]). Given a compact subset K ⊂ R+ × R
n−1, there exists ε0 > 0

such that for all (μ, ξ) ∈ K and 0 < |ε| < ε0 there exists a unique wε(μ, ξ) ∈ TUμ,ξ
Z such

that

(i) ‖wε(μ, ξ)‖ = O(|ε|) as ε → 0, uniformly with respect to (μ, ξ) ∈ K;

(ii) wε(·, ·) is of class C1.

The function Φε : K → R defined by Φε(μ, ξ) = Iε(Uμ,ξ + wε(μ, ξ)) is of class C
1 and

Φ′
ε(μ

∗, ξ∗) = 0 =⇒ I ′ε (Uμ∗,ξ∗ + wε(μ
∗, ξ∗)) = 0.

Moreover, one has

Φε(μ, ξ) = c0 − ε
1

2
G(Uμ,ξ) + o(ε), (4.13)

where c0 = I0(Uμ,ξ).

Therefore we need to study the finite dimensional functional

Γ(μ, ξ) = G(Uμ,ξ) =

∫
Rn−1

a(x)

|x| U2
μ,ξ(x)dx. (4.14)

Lemma 4.3. Suppose that a(x)
|x| ∈ L1(Rn−1) ∩ Lp(Rn−1) for some p > n − 1; then

limμ+|ξ|→∞ Γ(μ, ξ) = 0.

Proof. Let us first consider the case where μ → 0 and |ξ| → ∞. Then we have

|Γ(μ, ξ)| � 1

μn−2

∫
Rn−1

∣∣∣∣a(x)|x|

∣∣∣∣U2

(
x− ξ

μ

)
dx

� 1

μn−2

( ∫
Rn−1

∣∣∣∣a(x)|x|

∣∣∣∣
p

dx

) 1
p
( ∫

Rn−1

U
2p

p−1

(
x− ξ

μ

)
dx

) p−1
p

� μ
(n−1)(p−1)

p −(n−2)

∥∥∥∥a(x)|x|

∥∥∥∥
Lp(Rn−1)

‖U‖2
L

2p
p−1 (Rn−1)

−→ 0 (4.15)

as μ → 0 because p > n− 1. Now, if μ → μ0 > 0 and |ξ| → ∞, the limit

Γ(μ, ξ) =
1

μn−2

∫
Rn−1

a(x)

|x| U2

(
x− ξ

μ

)
dx −→ 0

is obtained from the Dominated Convergence Theorem, since a(x)
|x| ∈ L1(Rn−1).

Finally, if μ → ∞, then

|Γ(μ, ξ)| � 1

μn−2

∥∥U2
∥∥
L∞(Rn−1)

∥∥∥∥a(x)|x|

∥∥∥∥
L1(Rn−1)

−→ 0. (4.16)

�
Now we can prove an existence result for (4.1).

Theorem 4.4. Suppose that a(x) ∈ L∞(Rn−1), a(x)
|x| ∈ L1(Rn−1) ∩ Lp(Rn−1) for some

p > n − 1 and that
∫
Rn−1

a(x)
|x| dx �= 0. Then, (4.1) possesses a positive solution for |ε|

small enough.
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Proof. By (4.15) we can extend the function Γ(μ, ξ) continuously to {0} ×R
n−1 with

Γ(0, ξ) ≡ 0. Also, by Lemma 4.3 we already know that

lim
μ+|ξ|→∞

Γ(μ, ξ) = 0.

Now, we fix ξ = 0 and evaluate

lim
μ→∞

∫
Rn−1

a(x)

|x| U2

(
x

μ

)
dx = U2(0)

∫
Rn−1

a(x)

|x| dx �= 0

and hence limμ→∞ μn−2Γ(μ, 0) �= 0, which implies that Γ �≡ 0.

Therefore Γ attains a maximum or a minimum at some (μ0, ξ0) with μ > 0 and there

exists a neighborhood N ⊂ R+ × R
n−1 of (μ0, ξ0) such that

max
∂N

Γ < Γ(μ0, ξ0) or min
∂N

Γ > Γ(μ0, ξ0). (4.17)

It follows from (4.13) and (4.17) that Φε has a local maximum or a local minimum for

|ε| small and so, by Proposition 4.2, Iε has a critical point of the form

uε = Uμε,ξε + wε(με, ξε) (4.18)

with (με, ξε) closes to (μ0, ξ0).

It remains to prove that the solution uε is positive. Since I ′ε(uε) = 0 we have

0 = I ′ε(uε)u
−
ε = ‖u−

ε ‖2 − ε

∫
∂Rn

+

a(x)

|x| |u−
ε |2dx.

Hence, using Kato’s inequality, we get

‖u−
ε ‖2 � |ε|‖a‖L∞Cn‖u−

ε ‖2

(1− |ε|‖a‖L∞Cn) ‖u−
ε ‖2 � 0,

which implies that u−
ε ≡ 0 for |ε| small. Finally, by the maximum principle and Hopf’s

lemma, we arrive at

uε > 0 in Rn
+ \{0}.

�
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[5] D. H. Armitage, The Neumann problem for a function harmonic in Rn × (0,∞)., Arch. Rational
Mech. Anal. 63 (1976), no. 1, 89–105, DOI 10.1007/BF00280145. MR0427656

http://www.ams.org/mathscinet-getitem?mr=2796235
http://www.ams.org/mathscinet-getitem?mr=1696454
http://www.ams.org/mathscinet-getitem?mr=1850201
http://www.ams.org/mathscinet-getitem?mr=2186962
http://www.ams.org/mathscinet-getitem?mr=0427656


710 LUCAS C. F. FERREIRA AND SÉRGIO L. N. NEVES
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