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polynomials, the confluent hypergeometric function, and the cylindrical functions are

derived. A part of these formulas is obtained by exploiting some properties of the Her-

mite polynomials, including their Hilbert and Fourier transforms and connections to the

Laguerre polynomials. The relations discovered give rise to complete systems of new

orthogonal functions. Free of singular integrals, exact and approximate solutions to the

characteristic and complete singular integral equations in a semi-infinite interval are pro-

posed. Another set of the Hilbert transforms in a semi-axis are deduced from integral

relations with the Cauchy kernel in a finite segment for the Jacobi polynomials and the

Jacobi functions of the second kind by letting some parameters involved go to infinity.

These formulas lead to integral relations for the Bessel functions. Their application to a

model problem of contact mechanics is given. A new quadrature formula for the Cauchy

integral in a semi-axis based on an integral relation for the Laguerre polynomials and

the confluent hypergeometric function is derived and tested numerically. Bounds for the

remainder are found.
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1. Introduction. The Hilbert transform, a convolution of a function and the Cauchy

kernel, in the real axis was introduced by Hilbert at the beginning of the twentieth century

as a tool for boundary value problems of the theory of analytic functions. Since then its

properties and related methods in miscellaneous areas of applied sciences have been of

interest for pure and applied mathematicians. Properties of the Hilbert transforms in the

real axis are presented in detail in [23]. The Hilbert transform in a finite segment has been

extensively studied due to applications to singular integral equations [19], [7], [16], [20],

[25], [8], and quadrature formulas [12], [21] for the Cauchy integral in the interval (−1, 1).

In particular, a formula for the Hilbert transform in the interval (−1, 1) of the weighted

Jacobi polynomials was discovered in [24]. This formula generates many integral relations

for orthogonal polynomials crucial for the solution of singular integral equations. In [11],

the Fourier-Plancherel transformation was employed to derive a spectral representation

of the finite Hilbert transform and an expansion of an arbitrary L2(a, b)-function in

terms of the Hilbert operator eigenfunctions. In [14], a self-adjoint differential equation

was considered and integral operators whose eigenfunctions are the solutions of that

differential equation were determined. This made it possible to recover spectral relations

for the operators found and solve the corresponding singular integral equations in a

finite interval. Finite Hilbert transforms of the Chebyshev, Bernstein, and Lagrange

interpolating polynomials were used for an approximate solution of the Prandtl integro-

differential equation in [15].

The Hilbert transform in a semi-axis has received less attention than its infinite and

finite analogues. At the same time, many model problems including those arising in

fluid mechanics, fracture, and penetration mechanics are governed by singular integral

equations or their systems in a semi-axis whose kernels can be represented as a sum of

the Cauchy kernel and a regular kernel. Also, vector Riemann–Hilbert problems, when

the associated matrix Wiener–Hopf factors are infeasible, do not admit a closed-form

solution. Alternatively, they can be written as systems of singular integral equations.

The kernels of these systems may often be split into the Cauchy kernel and bounded

functions (see, for example, [1], [2], [3]). Replacing the semi-axis (0,∞) by a finite

segment (0, A) and applying the numerical methods for singular integral equations in a

finite segment do not preserve the properties of the solution far away from the point 0

and may generate a significant error of approximation due to the change of the weight

function. In this paper, we aim to derive a series of integral relations in a semi-axis for the

Laguerre polynomials, the confluent hypergeometric function, the Tricomi function, and

the Bessel functions, and study a new system of functions {Gm(x)}∞m=0, the G-functions,

generated by these integral relations. We also intend, by means of these integral relations,

to solve some singular integral equations and obtain a quadrature formula for the Cauchy

integral in a semi-axis.

In Section 2, we introduce the G-functions, the Hilbert transforms of the weighted

Hermite polynomials,

Gn(x) =
1

π

∫ ∞

−∞

Hn(t)e
−t2/2dt

t− x
, n = 0, 1, . . . , (1.1)

show that they constitute a complete orthogonal system in the associated space, and
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derive their representation in terms of the confluent hypergeometric function Φ,

G2m+j(x) =

√
2(2m+ j)!x1−j

(−1)j+1ex2/2

m∑
k=0

2kΦ(1/2− k − j, 3/2− j;x2/2)

(−1)k(m− k)!Γ(k + j + 1/2)
, (1.2)

where m = 0, 1, . . . and j = 0, 1. We discover the Hilbert transforms in a semi-axis

of the Laguerre polynomials in two weighted spaces, L2
w±(0,∞) and L2

v±(0,∞), where

w±(x) = x±1/2e−x/2 and v±(x) = x±1/2e−x. It is found that the first group of the

relations generates an orthogonal basis whose elements are the G-functions, while the

second one gives rise to a nonorthogonal basis. We study the G-functions in Section

3. It is shown that these functions of even and odd indices satisfy certain second-order

inhomogeneous differential equations with variable coefficients. Also, the asymptotics of

the G-functions at the points 0 and ∞ is derived.

In Section 4, based on the Tricomi integral relation [24] written for the Jacobi polyno-

mials P
(α,β)
n (1− 2x/β) and by passing to the limit β → ∞, we discover integral relations

for the Laguerre polynomials Lα
n(x) to be used in Section 6 for a quadrature formula for

the Cauchy integral in a semi-axis. In addition, by employing some representations of

the Jacobi function of the second kind Q
(α,β)
n (x) and passing to the limit n → ∞ in the

representations for n−αQ
(α,β)
n (1 − 1

2z
2/n2), we obtain integral relations for the Bessel

functions.

In Section 5, we apply the integral relations in a semi-axis derived in the previous

sections to find a closed-form solution of the integral equation with the Cauchy kernel

in the interval (0,∞) in the classes of bounded and unbounded at zero functions. In

addition, we construct two bilinear expansions of the Cauchy kernel in terms of the

Laguerre polynomials and the G-functions. We also solve a system of two complete

integral equations with the Cauchy kernel in a semi-axis by reducing it to an infinite

system of linear algebraic equations of the second kind. By using the integral relation for

the Bessel function obtained in Section 4 and the Hankel transform, we obtain a closed-

form solution, that is free of singular integrals, to a contact problem on a semi-infinite

stamp and an elastic half-plane.

In Section 6, we obtain the following quadrature formula for the Cauchy integral in a

semi-axis:

1

π

∫ ∞

0

f(t)tαe−tdt

t− x
= − 1

n+ α

n∑
m=1

xmf(xm)

Lα
n−1(xm)

Qα
n(x)−Qα

n(xm)

x− xm
, 0 < x < ∞, (1.3)

where

Qα
n(x) =

1

π
e−xΓ(α)Φ(−n− α, 1− α;x)− cot παxαe−xLα

n(x). (1.4)

It is exact for a polynomial of degree n − 1 and requires n zeros, xm, of the Laguerre

polynomial Lα
n(x).

2. Hilbert transforms of the weighted Hermite and Laguerre polynomials

and the G- and V -functions. In this section we introduce the Hilbert transforms

Gn(x) and Vn(x) of the weighted Hermite polynomials, derive associated integral relations

for the weighted Laguerre polynomials, and study the properties of the functions Gn(x)

and Vn(x).
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2.1. Relations for the weighted Laguerre polynomials e−η/2η±1/2Lm(η). For real func-

tions ϕk(x) such that ϕk(x) ∈ L2(−∞,∞), k = 1, 2, define their Hilbert transform

Φk(x) = H[ϕk(t)](x) by

Φk(x) =
1

π

∫ ∞

−∞

ϕk(t)dt

t− x
, −∞ < x < ∞. (2.1)

The integral is understood in the sense of the principal value at t = x and the mean square

sense at infinity. Then Φk(x) ∈ L2(−∞,∞), k = 1, 2, and the generalized Parseval’s

relation holds [23]: ∫ ∞

−∞
ϕ1(x)ϕ2(x)dx =

∫ ∞

−∞
Φ1(x)Φ2(x)dx. (2.2)

The Hilbert transform H is a 1-1 map and a unitary operator in the space L2(−∞,∞).

Since this operator preserves the inner product in the Hilbert space L2(−∞,∞), a com-

plete orthogonal system in the space L2(−∞,∞) is transformed by the operator H into

another complete orthogonal system in the same space.

Theorem 2.1. Let Hn(x) be the Hermite polynomials normalized by the condition

lim
x→∞

x−nHn(x) = 2n. (2.3)

For the orthogonal system of functions H
(1)
n (x) = exp(−x2/2)Hn(x), denote their Hilbert

transforms by

Gn(x) =
1

π

∫ ∞

−∞

H
(1)
n (t)dt

t− x
, n = 0, 1, . . . , −∞ < x < ∞. (2.4)

Then the functions Gn(x) form a complete orthogonal system in the space L2(−∞,∞),∫ ∞

−∞
Gn(x)Gm(x)dx =

√
π2nn!δmn, (2.5)

and admit the following representations:

G2m(x) = −
√
2(2m)!xe−x2/2

m∑
k=0

(−1)k2kΦ(1/2− k, 3/2;x2/2)

(m− k)!Γ(k + 1/2)
,

G2m+1(x) =
√
2(2m+ 1)!e−x2/2

m∑
k=0

(−1)k2kΦ(−1/2− k, 1/2;x2/2)

(m− k)!Γ(k + 3/2)
, m = 0, 1, . . . .

(2.6)

Here, δmn is the Kronecker symbol, Φ(a, c;x) is the confluent hypergeometric function,

Φ(a, c;x) =

∞∑
k=0

(a)kx
k

(c)kk!
, (2.7)

and (a)k is the factorial symbol, (a)k = a(a+ 1) · · · (a+ k − 1).

Proof. The first statement of the theorem follows from the unitarity of the Hilbert

operator, the Parseval’s relation∫ ∞

−∞
Gn(x)Gm(x)dx =

∫ ∞

−∞
H(1)

n (x)H(1)
m (x)dx, (2.8)
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and the orthogonality of the functions H
(1)
n (x). To prove formulas (2.6), we apply the

Fourier transform to equation (2.4) and employ the convolution theorem and the spectral

relation for the Fourier operator ([10, 7.376.1, p. 804])

F [H(1)
n (x)](λ) = in

√
2πH(1)

n (λ), n = 0, 1, . . . , (2.9)

to deduce

F [Gn(x)](λ) = −in+1sgnλ
√
2πH(1)

n (λ), n = 0, 1, . . . . (2.10)

Here,

F [φ(x)](λ) =

∫ ∞

−∞
φ(x)eiλxdx. (2.11)

The Fourier inversion applied for even and odd indices yields the following alternative

integral representations for the G-functions:

G2m(x) = (−1)m+1

√
2

π

∫ ∞

0

H
(1)
2m(λ) sinλxdλ,

G2m+1(x) = (−1)m
√

2

π

∫ ∞

0

H
(1)
2m+1(λ) cosλxdλ, m = 0, 1, . . . , −∞ < x < ∞.

(2.12)

Next express the Hermite polynomials through the Laguerre polynomials ([5, 10.13 (2),

(3), p. 193])

H2m(x) = (−1)m22mm!L−1/2
m (x2), H2m+1(x) = (−1)m22m+1m!xL1/2

m (x2), (2.13)

where the Laguerre polynomials are given by ([10, 8.970.1, p. 1000])

Lα
m(x) =

m∑
k=0

(
m+ α

m− k

)
(−1)kxk

k!
,

(
a

n

)
=

Γ(a+ 1)

n!Γ(a− n+ 1)
. (2.14)

Now substitute the expressions (2.13) into (2.12) and use formula (2.14) and the sine-

and cosine-integral transforms of the function xβe−αx2

([6, 2.4 (24), p. 74]). After a

simple rearrangement we ultimately have the representations (2.6). �

Corollary 2.2. The semi-infinite Hilbert transforms of the weighted Laguerre polyno-

mials η∓1/2e−η/2L
−1/2
m (η) are given by

1

π

∫ ∞

0

e−η/2L
−1/2
m (η)dη

(η − ξ)
√
η

=
(−1)mG2m(

√
ξ)

22mm!
√
ξ

,

1

π

∫ ∞

0

e−η/2L
1/2
m (η)

√
ηdη

η − ξ
=

(−1)mG2m+1(
√
ξ)

22m+1m!
, m = 0, 1, . . . , 0 < ξ < ∞. (2.15)

Proof. Write the Hilbert transforms (2.4) separately for even and odd indices, make

the substitutions ξ = x2 and η = t2, and employ formulas (2.13). This brings us to the

integral relations (2.15). �
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The orthogonality relations (2.5), when written for the functions Gn(
√
ξ), imply∫ ∞

0

G2m(
√
ξ)G2n(

√
ξ)

dξ√
ξ
= 22n(2n)!

√
πδmn,

∫ ∞

0

G2m+1(
√
ξ)G2n+1(

√
ξ)

dξ√
ξ
= 22n+1(2n+ 1)!

√
πδmn, m, n = 0, 1, . . . . (2.16)

Notice that the orthogonality relations (2.5) can alternatively be derived by employing

the orthogonality relation for the weighted Hermite polynomials H
(1)
n (x) and formulas

(2.12). Indeed, for even indices we have∫ ∞

−∞
G2n(x)G2m(x)dx = 2(−1)m+1

√
2

π

∫ ∞

0

G2n(x)dx

∫ ∞

0

e−λ2/2H2m(λ) sinλxdλ.

(2.17)

Upon changing the order of integration and applying the inverse sine-transform∫ ∞

0

G2n(x) sinλxdx = (−1)n+1

√
π

2
e−λ2/2H2n(λ), λ > 0, (2.18)

we deduce formula (2.5) for even indices. In the same fashion, this formula is derived for

odd indices.

2.2. Relations for the weighted Laguerre polynomials e−ηη±1/2Lm(η). Consider the

Hilbert transform of the Hermite polynomials with the new weight e−x2

, H
(2)
n (x) =

e−x2

Hn(x).

Theorem 2.3. Denote the semi-infinite Hilbert transform of the weighted Hermite poly-

nomials H
(2)
n (x) by

Vn(x) =
1

π

∫ ∞

−∞

H
(2)
n (t)dt

t− x
, n = 0, 1, . . . , −∞ < x < ∞. (2.19)

Then the functions Vn(x) admit the following representations in terms of the confluent

hypergeometric function:

V2m(x) =
(−1)m+1

√
π

22m+1m!xe−x2

Φ

(
1

2
−m,

3

2
;x2

)
,

V2m+1(x) =
(−1)m√

π
22m+1m!e−x2

Φ

(
−1

2
−m,

1

2
;x2

)
, m = 0, 1, . . . , −∞ < x < ∞.

(2.20)

Proof. As before, apply the Fourier transform and use the convolution theorem to

obtain

F [Vn(x)](λ) = −i sgnλF [H(2)
n (x)](λ). (2.21)

To compute the Fourier transform of the function H
(2)
n (x), we consider the even and odd

indices cases separately and employ the table integrals ([10, 7.388.1, p. 806])∫ ∞

0

H
(2)
2m(t) cosλtdt =

1

2
(−1)m

√
πλ2me−λ2/4,

∫ ∞

0

H
(2)
2m+1(t) sinλtdt =

1

2
(−1)m

√
πλ2m+1e−λ2/4. (2.22)
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If combined, these give

F [V2m(x)](λ) = −i
√
π(−1)m sgnλλ2me−λ2/4,

F [V2m+1(x)](λ) =
√
π(−1)m|λ|2m+1e−λ2/4, m = 0, 1, . . . , −∞ < λ < ∞. (2.23)

By the Fourier inversion we deduce analogues of formulas (2.6) and express the func-

tions Vn(x), the Hilbert transforms of the functions H
(2)
n (x), in terms of the confluent

hypergeometric functions by (2.20). �
Upon transforming the interval (−∞,∞) into the semi-infinite interval and making

the substitutions x2 = ξ and t2 = η, formulas (2.19) and (2.20) enable us to prove the

following result.

Corollary 2.4. The semi-infinite Hilbert transforms of the weighted Laguerre polyno-

mials η∓1/2e−ηL
−1/2
m (η) are expressed through the confluent hypergeometric functions

by

1

π

∫ ∞

0

e−ηL
−1/2
m (η)dη

(η − ξ)
√
η

= −2e−ξ

√
π

Φ

(
1

2
−m,

3

2
; ξ

)
,

1

π

∫ ∞

0

e−ηL
1/2
m (η)

√
ηdη

η − ξ
=

e−ξ

√
π
Φ

(
−1

2
−m,

1

2
; ξ

)
, m = 0, 1, . . . , 0 < ξ < ∞.

(2.24)

Undoubtedly, the integral relations (2.24) are simpler than (2.15). However, if applied

to singular integral equations with the Cauchy kernel in a semi-infinite interval, they have

a disadvantageous feature: the right-hand sides of the relations (2.24), the functions

φ(1)
m (ξ) = −2e−ξ

√
π

Φ

(
1

2
−m,

3

2
; ξ

)
, φ(2)

m (ξ) =
e−ξ

√
π
Φ

(
−1

2
−m,

1

2
; ξ

)
, (2.25)

do not form an orthogonal system in the space L2(0,∞). At the same time, the systems

{φ(1)
m (ξ)}∞m=0 and {φ(2)

m (ξ)}∞m=0 are linearly independent. To prove the linear indepen-

dence of the first system, denote

χm(η) = e−ηη−1/2[c0L
−1/2
0 (η) + c1L

−1/2
1 (η) + · · ·+ cmL−1/2

m (η)]. (2.26)

From the first formula in (2.24) we deduce

1

π

∫ ∞

0

χm(η)dη

η − ξ
= c0φ

(1)
0 (ξ) + c1φ

(1)
1 (ξ) + · · ·+ cmφ(1)

m (ξ), 0 < ξ < ∞. (2.27)

Suppose

c0φ
(1)
0 (ξ) + c1φ

(1)
1 (ξ) + · · ·+ cmφ(1)

m (ξ) = 0, 0 < ξ < ∞. (2.28)

Since the homogeneous singular integral equation

1

π

∫ ∞

0

χm(η)dη

η − ξ
= 0, 0 < ξ < ∞, (2.29)

has only the trivial solution in the class of functions integrable in the interval (0,∞), we

have

c0L
−1/2
0 (η) + c1L

−1/2
1 (η) + · · ·+ cmL−1/2

m (η) = 0, 0 < ξ < ∞. (2.30)

Now, the system of the Laguerre polynomials {Lα
n(η)}mn=0 is linearly independent in

(0,∞). Therefore c0 = c1 = · · · = cm = 0, and the functions φ
(1)
0 (ξ), φ

(1)
0 (ξ), . . . , φ

(1)
m (ξ)
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are linearly independent for any m. We can show that the second system {φ(2)
m (ξ)}∞m=0

is linearly independent in a similar manner.

In what follows we orthogonalize the systems {φ(1)
m (ξ)}∞m=0 and {φ(2)

m (ξ)}∞m=0 and

represent the elements of these orthogonal systems as linear combinations of the functions

φ
(1)
m (ξ) and φ

(1)
m (ξ), respectively. Consider the integrals

J (1)
m (ξ) =

1

π

∫ ∞

0

e−η/2L
−1/2
m (η)dη

(η − ξ)
√
η

,

J (2)
m (ξ) =

1

π

∫ ∞

0

e−η/2L
1/2
m (η)

√
ηdη

η − ξ
, m = 0, 1, . . . , 0 < ξ < ∞. (2.31)

We aim to compute them by utilizing formulas (2.24). On making the substitutions

η = 2u and ξ = 2t and employing the identity ([5, (40), p. 192]) that is

L−1/2
m (2u) =

m∑
k=0

(
m− 1/2

m− k

)
(−1)m−k2kL

−1/2
k (u), (2.32)

we have for the integral J
(1)
m (ξ)

J (1)
m (2t) =

1√
2

m∑
k=0

(
m− 1/2

m− k

)
(−1)m−k2k

π

∫ ∞

0

e−uL
−1/2
k (u)du

(u− t)
√
u

. (2.33)

The integral in (2.33) is given by the first formula in (2.24). This brings us to the

following relation:

J (1)
m (2t) = −

√
2

π

m∑
k=0

(
m− 1/2

m− k

)
(−1)m−k2ke−tΦ

(
1

2
− k,

3

2
; t

)
. (2.34)

Analysis of this formula shows that the function J
(1)
m (2t) is a linear combination of the

functions φ
(1)
k (t). Simple transformations ultimately yield

J (1)
m (ξ) =

(−1)mG2m(
√
ξ)

22mm!
√
ξ

, m = 0, 1, . . . , 0 < ξ < ∞. (2.35)

In a similar fashion we obtain

J (2)
m (ξ) =

(−1)mG2m+1(
√
ξ)

22m+1m!
, m = 0, 1, . . . , 0 < ξ < ∞. (2.36)

Thus, we have deduced that the orthogonalization of the systems {φ(1)
m (ξ)}∞m=0 and

{φ(2)
m (ξ)}∞m=0 leads to the integral relations (2.15) derived in Section 2.1.

To complete this section, we invert the relations (2.24) by representing them as the

integral equation with the Cauchy kernel in a semi-infinite segment

1

π

∫ ∞

0

φ(η)dη

η − ξ
= f(ξ), 0 < ξ < ∞. (2.37)

Its solution in the class of integrable functions in (0,∞) and unbounded at ξ = 0 is

φ(ξ) = − 1

π
√
ξ

∫ ∞

0

√
ηf(η)dη

η − ξ
, (2.38)
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and the solution bounded at the point ξ = 0 has the form

φ(ξ) = −
√
ξ

π

∫ ∞

0

f(η)dη
√
η(η − ξ)

. (2.39)

Note that one of the ways to obtain formulas (2.38) and (2.39) is to employ the solution

of the singular integral equation in the segment (a, b) [8], put a = 0, and pass to the limit

b → ∞. Upon employing these expressions for the inverse operators and the relations

(2.24), we obtain, respectively,

1

π

∫ ∞

0

√
ηe−ηΦ(1/2−m, 3/2; η)dη

η − ξ
=

√
π

2
e−ξL−1/2

m (ξ),

1

π

∫ ∞

0

e−ηΦ(−1/2−m, 1/2; η)dη
√
η(η − ξ)

= −
√
πe−ξL1/2

m (ξ), m = 0, 1, . . . , 0 < ξ < ∞.

(2.40)

3. Properties of the G-functions. We have proved that the Hilbert transforms

of the functions exp(−x2/2)Hn(x), the functions Gn(x), form an orthogonal system in

the space L2(−∞,∞) with the L2-norm ||Gn(x)|| = π1/42n/2
√
n!, while the systems

of the functions {G2n(
√
ξ)} and {G2n+1(

√
ξ)} (n = 0, 1, . . .) are two orthogonal bases

for the weighted space L2
w(0,∞) with weight w(ξ) = ξ−1/2. It was also deduced that,

up to certain constant factors, the functions ξ−1/2G2m(ξ) and G2m+1(ξ) are the semi-

infinite Hilbert transforms of the weighted Laguerre polynomials e−η/2η−1/2L
−1/2
m (η) and

e−η/2η1/2L
1/2
m (η), respectively.

In this section we aim to show that the functions G2m(ξ) and G2m+1(ξ) satisfy certain

ordinary differential equations and also to study their asymptotics for small and large

ξ. It is known ([5, (13), p. 193]) that the function H
(1)
2m(λ) = e−λ2/2H2m(λ) satisfies the

differential equation (
d2

dλ2
+ 4m+ 1− λ2

)
H

(1)
2m(λ) = 0. (3.1)

Now, the function G2m(x), up to a factor, is the sine-transform of the function H
(1)
2m(λ),

G2m(x) = (−1)m+1

√
2

π

∫ ∞

0

H
(1)
2m(λ) sinλxdλ. (3.2)

By multiplying equation (3.1) by (−1)m+1
√
2/π sinλx, integrating in (0,∞), and then

integrating by parts we deduce(
d2

dx2
+ 4m+ 1− x2

)
G2m(x) = B(1)

m x, 0 < x < ∞, G2m(0) = 0, (3.3)

where

B(1)
m =

√
2

π

(2m)!

m!
. (3.4)

In our derivations, we used the fact that H
(1)
2m(0) = (−1)m(2m)!/m!.
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Similar actions discover that the G-functions of odd indices satisfy the differential

equation(
d2

dx2
+ 4m+ 3− x2

)
G2m+1(x) = B(2)

m x, 0 < x < ∞,
d

dx
G2m+1(0) = 0, (3.5)

where

B(2)
m =

√
2

π

2(2m+ 1)!

m!
. (3.6)

Now analyze the asymptotics of the functions Gn(ξ) as ξ → 0 and ξ → ∞. The

representations (2.6) of G2m(x) and G2m+1(x) and the series (2.7) imply

G2m(x) ∼ a0x, G2m+1(x) ∼ a1, x → 0, (3.7)

where

a0 = −
√
2(2m)!

m∑
k=0

(−1)k2k

(m− k)!Γ(k + 1/2)
, a1 =

√
2(2m+ 1)!

m∑
k=0

(−1)k2k

(m− k)!Γ(k + 3/2)
.

(3.8)

To derive the asymptotics of the G-functions for large x, we employ the formula ([4,

6.13.1(3), p. 278])

Φ(a, c;x) =
Γ(c)

Γ(a)
exxa−c[1 +O(x−1)], x → ∞. (3.9)

From the representations (2.6) we deduce

G2m(x) ∼ −22m+1/2Γ(m+ 1/2)

πx
, x → ∞,

G2m+1(x) ∼ −22m+5/2Γ(m+ 3/2)

πx2
, x → ∞. (3.10)

It is possible to obtain full asymptotic expansions for large x for these functions by

expressing the function Φ in (2.6) through the Tricomi function Ψ and writing the as-

ymptotic expansion of the function Ψ (see [4, 6.13.1(1) and 6.7(7)], respectively). Alter-

natively, we may use the relation (3.2) and the asymptotic formula ([13, (3), p. 56])∫ ∞

0

f(λ) sinλxdλ ∼ f(0)

x
− f ′′(0)

x3
+

f IV (0)

x5
− . . . , x → ∞. (3.11)

This asymptotic expansion holds for all functions f(x) defined with all its derivatives for

x ≥ 0. We discover for the G-functions of even indices

G2m(x) ∼ (−1)m+1

√
2

π

[
H

(1)
m (0)

x
− d2H

(1)
m (0)

x3dx2
+

d4H
(1)
m (0)

x5dx4
− · · ·

]
, x → ∞, (3.12)

where
d2nH

(1)
n (0)

dx2n
= (−1)n+m(2n)!(2m)!

n∑
j=0

22j

(2j)!(m− j)!(2n− 2j)!!
, (3.13)

where (2m)!! = 2 · 4 · . . . · (2m). On computing the first several terms we have

G2m(x) ∼ −
√

2

π

(2m)!

m!

(c1
x

+
c3
x3

+
c5
x5

+
c7
x7

+ · · ·
)
, x → ∞, (3.14)
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where

c1 = 1, c3 = 4m+ 1, c5 = 16m2 + 8m+ 3, c7 = 64m3 + 48m2 + 68m+ 15. (3.15)

A similar asymptotic expansion may be obtained for the functions G2m+1(x).

For applications to integral equations, it will be convenient to denote

G(1)
m (ξ) =

G2m(
√
ξ)

2m
√
(2m)!π1/4

,

G(2)
m (ξ) =

G2m+1(
√
ξ)

2m+1/2
√

(2m+ 1)!π1/4
, m = 0, 1, . . . , 0 < ξ < ∞. (3.16)

These functions form two orthonormal bases for the weighted space L2
w(0,∞) with weight

w(ξ) = ξ−1/2, ∫ ∞

0

G(j)
n (ξ)G(j)

m (ξ)
dξ√
ξ
= δmn, m, n = 0, 1, . . . , j = 1, 2. (3.17)

In Figures 1 and 2, we plot the functions G
(1)
m (ξ) and G

(2
m(ξ) for m = 0, 1, . . . , 4, respec-

tively. It has been discovered that although the functions G
(1)
m (ξ) and G

(2
m(ξ) are not

0 5 10 15 20 25 30
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

G
m(1

) (
)

m=1 m=2 m=3
m=4

m=0

Fig. 1. The functions G
(1)
m (ξ), m = 0, 1, 2, 3, 4
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0.4

0.6

0.8

1

G
m(2

) (
)

m=0

m=2
m=1

m=3
m=4

Fig. 2. The functions G
(2)
m (ξ), m = 0, 1, 2, 3, 4

polynomials, in addition to the orthogonality and being a basis of a certain weighted

space, they share another property of classical orthogonal polynomials: in their interval

of definition, [0,∞), the number of zeros correlates with the index and equals m+ 1 for

both functions. Note that in the case of G
(1)
m (ξ), G

(1)
m (ξ) ∼ const

√
ξ, ξ → 0, m = 0, 1, . . .,

and the point ξ = 0 is counted as the first zero of the function G
(1)
m (ξ). Due to the

relations (3.10) and 3.16), the functions G
(1)
m (ξ) and G

(2
m(ξ) vanish at infinity,

G(1)
m (ξ) ∼ −

√
2(2m− 1)!!

(2m)!!

1

π3/4
√
ξ
, G(2)

m (ξ) ∼ −
√

(2m+ 1)!!

(2m)!!

2

π3/4ξ
, ξ → ∞,

where (2m± 1)!! = 1 · 3 · . . . · (2m± 1).

4. Hilbert transforms associated with limiting relations for the Jacobi poly-

nomials and functions.

4.1. Laguerre polynomials and the Hilbert transform of the Jacobi polynomials. A

number of Hilbert transforms for special functions including the weighted Jacobi and

Laguerre polynomials and the confluent hypergeometric functions can be derived from

integral relations in a finite segment by letting a parameter involved go to infinity. To
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pursue this goal, we analyze the integral relation for the Jacobi polynomials [24]

π cotπα (1− x)α(1 + x)βP (α,β)
n (x)−

∫ 1

−1

(1− t)α(1 + t)β

t− x
P (α,β)
n (t)dt

=
2α+βΓ(α)Γ(n+ β + 1)

Γ(n+ α+ β + 1)
F

(
n+ 1,−n− α− β; 1− α;

1− x

2

)
,

−1 < x < 1, n = 0, 1, . . . . (4.1)

Here, α > −1, α �= 0, 1, . . ., β > −1, P
(α,β)
n (x) are the Jacobi polynomials, and

F (a, b; c;x) is the Gauss hypergeometric function. On making the substitutions x =

1− 2ξ/β and t = 1− 2η/β we infer

π cotπα ξα
(
1− ξ

β

)β

P (α,β)
n

(
1− 2ξ

β

)
+

∫ β

0

ηα(1− η/β)β

η − ξ
P (α,β)
n

(
1− 2η

β

)
dη

=
βαΓ(α)Γ(n+ β + 1)

Γ(n+ α+ β + 1)
F

(
n+ 1,−n− α− β; 1− α;

ξ

β

)
,

0 < ξ < β, n = 0, 1, . . . . (4.2)

In what follows we use the connection between the Laguerre and Jacobi polynomials

([22, (5.3.4) p. 103])

Lα
n(ξ) = lim

β→∞
P (α,β)
n

(
1− 2ξ

β

)
(4.3)

and the asymptotic formula for the Γ-functions

Γ(z + α)

Γ(z + β)
∼ zα−β , z → ∞. (4.4)

The last relation enables us to evaluate the limits

lim
β→∞

βαΓ(n+ β + 1)

Γ(n+ α+ β + 1)
= 1,

lim
β→∞

F

(
n+ 1,−n− α− β; 1− α;

ξ

β

)
= Φ(n+ 1, 1− α;−ξ). (4.5)

Now, on passing to the limit β → ∞ in (4.2) and using formula (4.3) and Kummer’s

transformation ([4, (7), p. 253])

Φ(n+ 1, 1− α;−ξ) = e−ξΦ(−α− n, 1− α; ξ), (4.6)

we obtain the following result.

Theorem 4.1. Let α > −1, α �= 0, 1, . . .. Then

π cotπα ξαe−ξLα
n(ξ) +

∫ ∞

0

ηαe−ηLα
n(η)dη

η − ξ
= Γ(α)e−ξΦ(−n− α, 1− α; ξ),

0 < ξ < ∞, n = 0, 1, . . . . (4.7)

Remark 4.2. This theorem generalizes Corollary 2.4: formulas (2.24) can be imme-

diately deduced from (4.7) by putting α = ±1/2 there.
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4.2. Laguerre polynomials and the Jacobi functions Q
(α,β)
n (x). To derive an analogue

of the integral relation (4.7) for the interval (−∞, 0), we analyze two representations of

the Jacobi function Q
(α,β)
n (x) ([22, (4.61.4), (4.61.5), p. 74]),

Q(α,β)
n (x) = − (x− 1)−α(x+ 1)−β

2

∫ 1

−1

(1− t)α(1 + t)β
P

(α,β)
n (t)dt

t− x
, n = 0, 1, . . . , (4.8)

and

Q(α,β)
n (x) =

2n+α+βΓ(n+ α+ 1)Γ(n+ β + 1)

Γ(2n+ α+ β + 2)
(x− 1)−n−α−1(x+ 1)−β

×F

(
n+ α+ 1, n+ 1; 2n+ α+ β + 2;

2

1− x

)
, n = 0, 1, . . . , (4.9)

where α > −1, β > −1. The relations are valid in the whole complex plane cut along

the segment [−1, 1]. We consider the case x > 1, employ the variables x = 1− 2ξ/β and

t = 1− 2η/β, and denote

fn(α, β; ξ) = 2(−ξ)α
(
1− ξ

β

)β

Q(α,β)
n

(
1− 2ξ

β

)
. (4.10)

This transforms the relations (4.8) and (4.9) to the following:

fn(α, β; ξ) =

∫ β

0

ηα(1− η/β)βP
(α,β)
n (1− 2η/β)dη

η − ξ

=
βn+α+1Γ(n+ α+ 1)Γ(n+ β + 1)

Γ(2n+ α+ β + 2)(−ξ)n+1
F

(
n+ α+ 1, n+ 1; 2n+ α+ β + 2;

β

ξ

)
. (4.11)

Passing to the limit β → ∞ in the expression for the function fn(α, β; ξ) gives

lim
β→∞

fn(α, β; ξ) = Γ(n+ α+ 1)(−ξ)−n−1
2F0(n+ 1, n+ α+ 1; ξ−1), ξ < 0, (4.12)

where 2F0(α, β; z) is a generalized hypergeometric series that can also be expressed

through the Tricomi function Ψ ([4, 6.6(3), p. 257])

2F0(α, β;−ξ−1) = ξαΨ(α, α− β + 1; ξ). (4.13)

Upon letting β → ∞ in the first relation in (4.11) in view of formula (4.3), we have∫ ∞

0

ηαe−ηLα
n(η)dη

η − ξ
= Γ(n+ α+ 1)Ψ(n+ 1, 1− α;−ξ), n = 0, 1, . . . ; −∞ < ξ < 0.

(4.14)

This formula can be rewritten in terms of the confluent hypergeometric function Φ if we

employ the relation between the Ψ- and Φ-functions ([4, 6.5(7), p. 257]). We have the

following result.

Theorem 4.3. Let α > −1, α �= 0, 1, . . .. Then∫ ∞

0

ηαe−ηLα
n(η)dη

η − ξ
= Γ(α)Φ(n+ 1, 1− α;−ξ)

+
Γ(−α)Γ(n+ α+ 1)

n!
(−ξ)αΦ(n+ 1+ α, 1 + α;−ξ), n = 0, 1, . . . ,−∞ < ξ < 0. (4.15)
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Remark 4.4. Alternatively, this relation can be derived by analytic continuation of

the Gauss function in (4.11) ([4, 2.10(2), p. 108])

F

(
n+ α+ 1, n+ 1; 2n+ α+ β + 2;

β

ξ

)
=

Γ(2n+ α+ β + 2)Γ(α)

Γ(n+ α+ 1)Γ(n+ α+ β + 1)

×
(
−β

ξ

)−n−1

F

(
n+ 1,−n− α− β; 1− α;

ξ

β

)
+

Γ(2n+ α+ β + 2)Γ(−α)

Γ(n+ 1)Γ(n+ β + 1)

×
(
−β

ξ

)−n−α−1

F

(
n+ α+ 1,−n− β; 1 + α;

ξ

β

)
, ξ < 0, (4.16)

and consequently passing to the limit β → ∞ in (4.11).

4.3. Integral relations for cylindrical functions. By passing to the limit n → ∞ in

certain relations for the Jacobi functions of the second kind it is possible to discover

some elegant formulas for cylindrical functions.

Theorem 4.5. Let λ > 0, and let α be a complex number such that −1 < Reα < 5/2.

Then

π

sinπα

[
zα/2J−α(λ

√
z)− (−z)αz−α/2Jα(λ

√
z)

]
=

∫ ∞

0

tα/2Jα(λ
√
t)dt

t− z
, (4.17)

where Jα(z) is the Bessel function and zα is the single branch in the z-plane cut along

the ray (−∞, 0] such that arg z ∈ [−π, π].

Proof. We start with the following representation of the Jacobi function ([5, (19),

p. 171]):

Q(α,β)
n (ζ) = − π

2 sinπα
P (α,β)
n (ζ) +

2α+β−1Γ(α)Γ(n+ β + 1)

Γ(n+ α+ β + 1)
(ζ − 1)−α(ζ + 1)−β

×F

(
n+ 1,−n− α− β; 1− α;

1− ζ

2

)
, (4.18)

valid in the whole ζ-plane cut along the segment [−1, 1]. On the cut sides, ζ = x ± i0,

arg(ζ− 1) = ±π, and arg(ζ+1) = 0. Put ζ = 1−w2/(2n2). Then the branch cut [−1, 1]

in the ζ-plane is transformed into the cut [0, 2n] of the w-plane. Intending to pass to the

limit n → ∞ we multiply equation (4.18) by n−α and use the limiting relation ([5, (41),

p. 173])

lim
n→∞

n−αP (α,β)
n

(
1− w2

2n2

)
=

(w

2

)−α

Jα(w). (4.19)

This relation holds for arbitrary α and β, uniformly in any bounded region of the complex

plane. It is directly verified that

lim
n→∞

F

(
n+ 1,−n− α− β; 1− α;

w2

4n2

)
=

∞∑
k=0

(−1)kw2k

k!(1− α)k22k

= Γ(1− α)
(w

2

)α

J−α(w). (4.20)

Consequently, we deduce from (4.18) that

lim
n→∞

n−αQ(α,β)
n

(
1− w2

2n2

)
=

π2α−1

sinπα

[
(−w2)−αwαJ−α(w)− w−αJα(w)

]
. (4.21)
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Now, make the substitution x = 1− w2/(2n2) in the integral relation (4.8) to obtain

Q(α,β)
n

(
1− w2

2n2

)
= (−w2)−α

(
2− w2

2n2

)−β

×
∫ 2n

0

u2α+1

(
2− u2

2n2

)β
P

(α,β)
n (1− 1

2u
2/n2)du

u2 − w2
. (4.22)

We multiply this equation by n−α, pass to the limit n → ∞, and use formulas (4.19) and

(4.21). We have

π

2 sinπα

[
wαJ−α(w)− (−w2)αw−αJα(w)

]
=

∫ ∞

0

uα+1Jα(u)du

u2 − w2
. (4.23)

Next we make the substitutions u = λ
√
t and w = λ

√
z, where λ is a positive parameter,

and ultimately deduce formula (4.17). �

Corollary 4.6. Let α = −1/2 − iμ, and let −∞ < μ < ∞. Then the Bessel function

Jα(λ
√
x satisfies the integral relation

1

π

∫ ∞

0

tα/2Jα(λ
√
t)dt

t− x
+ i tanhπμxα/2Jα(λ

√
x) = − xα/2

cosh πμ
J−α(λ

√
x), 0 < x < ∞.

(4.24)

Proof. Put z = x ± i0, 0 < x < ∞, in the last relation. Since arg(−z) = ∓π, by the

Sokhotski–Plemelj formulas

πxα/2

sinπα

[
J−α(λ

√
x)− e∓iπαJα(λ

√
x)

]
= ±πixα/2Jα(λ

√
x) +

∫ ∞

0

tα/2Jα(λ
√
t)dt

t− x
. (4.25)

It is directly verified that both formulas may be put into the same form as (4.24). �

Corollary 4.7. Let Iα(x) be the modified Bessel function of the first kind, let α =

−1/2− iμ, and let −∞ < μ < ∞. Then

1

π

∫ ∞

0

tα/2Jα(λ
√
t)dt

t− x
=

(−x)α/2

coshπμ
[Iα(λ

√
−x)− I−α(λ

√
−x)], −∞ < x < 0. (4.26)

Proof. Let z → x ± i0, x < 0. Since arg z = π, arg(−z) = 0, and Iα(x) =

e−iπα/2Jα(ix), we deduce from (4.17) the relation needed. �
Remark 4.8. On letting λ → 0+, we obtain from (4.25) the following spectral relation

for the operator H in a semi-infinite interval:

1

πi

∫ ∞

0

t−1/2+iμdt

t− x
= tanhπμx−1/2+iμ, 0 < x < ∞, −∞ < μ < ∞. (4.27)
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This means that the function f(t) = t−1/2+iμ is a generalized eigenfunction of the Hilbert

operator in the interval (0,∞), and tanhπμ is its eigenvalue. We call f(t) a generalized

eigenfunction since it is not an L2(0,∞)-function. By virtue of the inequality −∞ < μ <

∞, the interval (−1, 1) is a continuous spectrum of the operator H.

Remark 4.9. The particular case (4.24) of the general formula (4.17) can also be

derived from the integral relation for the Jacobi polynomials ([24], [18])

1

πi

∫ 1

−1

P
(α,ᾱ)
n (t)(1− t)α(1 + t)ᾱdt

t− x
− i tanhπμP (α,ᾱ)

n (x)(1− x)α(1 + x)ᾱ

=

{
(2 coshπμ)−1P

(ᾱ+1,α+1)
n−1 (x), n = 1, 2, . . . ,

0, n = 0,
− 1 < x < 1, (4.28)

by utilizing the substitutions x = 1− ξ2/(2n2) and t = 1− η2/(2n2) and passing to the

limit n → ∞.

Finally, we show that the classical Hilbert relation [23]

1

π

∫ ∞

−∞

cosληdη

ξ − η
= sinλξ, −∞ < ξ < ∞, λ > 0, (4.29)

can be deduced from (4.24) as a particular case. Put μ = 0 in (4.24). Due to the relations

J1/2(z) =

√
2

πz
sin z, J−1/2(z) =

√
2

πz
cos z (4.30)

we immediately get

1

π

∫ ∞

0

cosλ
√
tdt

(x− t)
√
t
=

sinλ
√
x√

x
, 0 < x < ∞. (4.31)

Equivalently, if the substitutions ξ =
√
x and η =

√
t are made, this may be written as

the Hilbert relation (4.29).

5. Applications to singular integral equations.

5.1. Integral equation with the Cauchy kernel in a semi-infinite axis. Based on the

integral relations (2.15) we derive an exact solution of the singular integral equation

1

π

∫ ∞

0

χ(t)dt

t− x
= f(x), 0 < x < ∞, (5.1)

in a series form free of singular integrals. In the class of functions unbounded at the

point x = 0, we expand the solution through the Laguerre polynomials

χ(x) =
e−x/2

√
x

∞∑
n=0

bn L−1/2
n (x). (5.2)
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By substituting the series (5.2) into equation (5.1) and using the first formula in (2.15)

and the first orthogonality relation in (2.16), we obtain for the coefficients bn

bn =
(−1)nn!√
π(2n)!

∫ ∞

0

f(t)G2n(
√
t)dt. (5.3)

In terms of the elements of the orthonormal basis {G(1)
n (t)}∞n=0 given by (3.16) these

coefficients have the form

bn = αn

∫ ∞

0

f(t)G(1)
n (t)dt, (5.4)

where

αn =
(−1)n

π1/4

√
(2n)!!

(2n− 1)!!
. (5.5)

In the class of functions bounded at the point x = 0 we seek the solution of equation

(5.1) in the form

χ(x) = e−x/2
√
x

∞∑
n=0

bn L1/2
n (x). (5.6)

Upon employing the second formulas in (2.15) and (2.16) we derive the coefficient bn by

quadratures possessing the G-functions of odd indices

bn =
(−1)nn!√
π(2n+ 1)!

∫ ∞

0

f(t)G2n+1(
√
t)

dt√
t

(5.7)

or, in terms of the orthonormal basis functions G
(2)
n (x),

bn = αn

√
2

2n+ 1

∫ ∞

0

f(t)G(2)
n (t)

dt√
t
. (5.8)

Interesting representations of the Cauchy kernel are derived by comparing the series-

and closed-form solutions of the singular integral equation (5.1).

Theorem 5.1. Let 0 < x < ∞ and 0 < t < ∞. Then the following two bilinear

expansions of the Cauchy kernel in terms of the Laguerre polynomials and theG-functions

are valid:

1

t− x
= −

√
π

t
e−x/2

∞∑
n=0

(−1)nn!

(2n)!
L−1/2
n (x)G2n(

√
t),

1

t− x
= −

√
πe−x/2

∞∑
n=0

(−1)nn!

(2n+ 1)!
L1/2
n (x)G2n+1(

√
t). (5.9)

Proof. The first representation of the Cauchy kernel is derived by comparing the series-

form solution (5.2) and its integral form (2.38). Had we substituted the coefficients bn
given by (5.7) into the series (5.6) and compared the new series with the integral-form

solution (2.39), we would have obtained the second formula. �
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Fig. 3. The solution of the integral equation (5.1) in the class of
functions unbounded at x = 0 (curve 1) and functions bounded at

x = 0 (curve 2). (a): f(x) =
√
xe−x/2. (b): f(x) = 1 if 0 < x < 1,

and f(x) = 0 if x > 1.

5.2. System of two singular integral equations. Consider the systems of complete sin-

gular integral equations of the first kind with the Cauchy kernel

1

π

∫ ∞

0

[
1

t− x
+K11(t, x)

]
χ1(t)dt+

1

π

∫ ∞

0

K12(t, x)χ2(t)dt = f1(x), 0 < x < ∞,

1

π

∫ ∞

0

K21(t, x)χ1(t)dt+
1

π

∫ ∞

0

[
1

t− x
+K22(t, x)

]
χ2(t)dt = f2(x), 0 < x < ∞,

(5.10)

where Kjl(t, x) may have a weak singularity at the line x = t. Suppose that the functions

χ1(x) and χ2(x) are integrable in the interval (0,∞) and not bounded at the point x = 0.

Then, necessarily, they have the square root singularity at this point. We expand the

unknown functions in terms of the Laguerre polynomials

χj(x) =
e−x/2

√
x

∞∑
m=0

b(j)m L−1/2
m (x), j = 1, 2. (5.11)

Because of the kernels kjl, in general, the coefficients b
(1)
m and b

(2)
m cannot be found in

explicit form. By applying the same argument as in the case of the characteristic equation
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(5.1) we deduce an infinite system of linear algebraic equations

b(1)n +
∞∑

m=1

(c(1,1)nm b(1)m + c(1,2)nm b(2)m ) = f (1)
n ,

b(2)n +
∞∑

m=1

(c(2,1)nm b(1)m + c(2,2)nm b(2)m ) = f (2)
n , n = 0, 1, . . . . (5.12)

Here,

c(j,l)nm =
αn

π

∫ ∞

0

∫ ∞

0

Kjl(t, x)
e−t/2

√
t

L−1/2
m (t)G(1)

n (x)dtdx, j, l = 1, 2,

f (j)
n = αn

∫ ∞

0

fj(x)G
(1)
n (x)dx, j = 1, 2, (5.13)

where αn are given by (5.5). Assume that the kernels of the system of integral equations

are chosen such that the system (5.12) is regular. By solving the infinite system (5.12)

by the reduction method we can approximately obtain the coefficients b
(j)
m and therefore

an approximate solution to the system of singular integral equations.

5.3. Integral relation for the Bessel function: a contact problem for a semi-infinite

stamp. Suppose a semi-infinite rigid stamp of profile y = g(x) is indented into an elastic

half-plane |x| < ∞, −∞ < y < 0 such that the adhesion contact conditions hold ev-

erywhere in the contact zone, while the rest of the boundary of the half-plane is free of

traction,

u(x, 0) = c1, v(x, 0) = g(x) + c2, 0 < x < ∞,

σy(x, 0) = τxy(x, 0) = 0, −∞ < x < 0. (5.14)

Here, u and v are the x- and y-components of the displacement vector, σy and τxy are

the stress tensor components, and c1 and c2 are constants. Denote p(x) = −σy(x, 0)

and τ (x) = −τxy(x, 0). Then this model problem is equivalent [17], [9] to the system of

integral equations

κ− 1

κ+ 1
p(x) +

1

π

∫ ∞

0

τ (t)dt

t− x
= 0, 0 < x < ∞,

κ− 1

κ+ 1
τ (x)− 1

π

∫ ∞

0

p(t)dt

t− x
=

4Gg′(x)

κ+ 1
, 0 < x < ∞, (5.15)

where κ = 3 − 4ν, ν is the Poisson ratio, and G is the shear modulus. In terms of the

function ϕ(x) = p(x) + iτ (x), this system may be written as a single integral equation

1

π

∫ ∞

0

ϕ(t)dt

t− x
+ i tanhπμϕ(x) = f(x), 0 < x < ∞, (5.16)

where f(x) = −4G(κ + 1)−1g′(x) and μ = (2π)−1 ln(3 − 4ν). For materials with the

Poisson ratio ν ∈ (0, 1/2), μ ∈ (0, μ0), μ0 ≈ 0.17484958. This equation can be solved

exactly by the Mellin transform or by the method of the Riemann–Hillbert problem. In

what follows, we propose an alternative technique based on the integral relation for the

Bessel function (4.24) and the Hankel transform. Represent the unknown function ϕ(x)

in the integral form

ϕ(x) = xα/2

∫ ∞

0

χ(λ)Jα(λ
√
x)dλ, α = −1

2
− iμ. (5.17)
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Here, the density χ(λ) is to be determined. Upon substituting this integral into equation

(5.16), changing the order of integration, and employing the relation (4.24) we deduce∫ ∞

0

χ(λ)J−α(λ
√
x)dλ = −x−α/2 cosh πμ f(x), 0 < x < ∞. (5.18)

By applying Hankel inversion we find the function χ(λ),

χ(λ) = −λ

2
coshπμ

∫ ∞

0

f(x)x−α/2J−α(λ
√
x)dx. (5.19)

We remark that the profile g(x) of the stamp is assumed to be chosen such that the

function f(x) = −4G(κ+1)−1g′(x) decays at infinity at the rate sufficient for the integral

in (5.19) being convergent. It is directly verified that at the point x = 0 and at infinity,

the solution (5.17) has the asymptotics required: it oscillates and ϕ(x) = O(x−1/2),

x → 0, and ϕ(x) = O(x−1/2), x → ∞.

6. Quadrature formula for the Cauchy integral in a semi-infinite interval.

In this section we obtain a quadrature formula for the Cauchy principal value of the

singular integral

Iα[f ](x) =
1

π

∫ ∞

0

f(t)w(t)dt

t− x
, w(t) = tαe−t, α > −1, α �= 0, 1, . . . , 0 < x < ∞.

(6.1)

Theorem 6.1. Let f(x) be Hölder-continuous in any finite interval [0, a], a > 0, |f(x)| ≤
Ceβx, x → ∞, C = const, β < 1, w(t) = tαe−t, α > −1, and α �= 0, 1, . . . . Then

Iα[f ](x) =
n∑

m=1

γmf(xm)
Qα

n(x)−Qα
n(xm)

x− xm
+Rn(x), 0 < x < ∞, x �= xm, (6.2)

where

γm = − xm

(n+ α)Lα
n−1(xm)

, (6.3)

xm (m = 1, 2, . . . , n) are the zeros of the degree-n Laguerre polynomial Lα
n(x), and

Qα
n(x) =

Γ(α)

π
e−xΦ(−n− α, 1− α;x)− cotπαxαe−xLα

n(x). (6.4)

For x = xj ,

Iα[f ](xj) = γjf(xj)
dQα

n(xj)

dx
+

n∑
m=1,m �=j

γmf(xm)
Qα

n(xj)−Qα
n(xm)

xj − xm
+Rn(xj), (6.5)

where

dQα
n(xj)

dx
=

1

π
e−xjΓ(α)

[
n+ α

α− 1
Φ(−n− α+ 1, 2− α;xj)− Φ(−n− α, 1− α;xj)

]

+cotπαxα−1
j e−xj (n+ α)Lα

n−1(xj). (6.6)
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Formula (6.2) is exact, and Rn(x) ≡ 0 when f(x) is a polynomial of degree not higher

than n− 1. Otherwise, if f(x) = Mn−1(x)+ r(x) and Mn−1(x) is a polynomial of degree

n− 1, then the remainder Rn(x) of the quadrature formula (6.2) is given by

Rn(x) = −
n∑

m=1

γmr(xm)

x− xm
[Qα

n(x)−Qα
n(xm)] +

1

π

∫ ∞

0

r(t)w(t)dt

t− x
. (6.7)

Proof. For our derivations, we use the method [12] proposed for the Cauchy integral

in the finite segment (−1, 1) and the integral relation (4.7) of Theorem 4.1. Introduce

the system of orthonormal Laguerre polynomials,

pj(t) = h
−1/2
j Lα

j (t), hj =
Γ(α+ j + 1)

j!
, j = 0, 1, . . . , (6.8)

and assume first that f(x) = Mn−1(x) is a polynomial of degree n − 1. It will be

convenient to express it in terms of the polynomials pj(t),

f(t) =

n−1∑
j=0

fjpj(t), (6.9)

where

fj =

∫ ∞

0

f(t)pj(t)w(t)dt, j = 0, 1, . . . , n− 1. (6.10)

By using the Gauss quadrature formula exactly for polynomials of degree not higher than

2n− 1, we find

fj =
n−1∑
m=1

Amf(xm)pj(xm) + R̂n(f), j = 0, 1, . . . , n− 1, (6.11)

where xm (m = 1, 2, . . . , n) are the zeros of the Laguerre polynomial Lα
n(x), Am are the

Christoffel coefficients,

Am =
Γ(α+ n+ 1)

n!xm[ d
dxL

α
n(xm)]2

, (6.12)

and R̂(f) is the reminder. Formula (6.11) is exact when f(t) = Mn−1(t). Denote further

that

qj(x) =

∫ ∞

0

pj(t)w(t)dt

t− x
, 0 < x < ∞. (6.13)

Substitute the sum (6.9) into (6.1) and, in view of (6.11) and (6.12), obtain for the

principal part of the integral (6.1)

Iα[f ](x) =
1

π

n∑
m=1

Amf(xm)

n−1∑
j=0

pj(xm)qj(x). (6.14)

Next write the Christoffel–Daurboux formula ([22, (3.2.3), p. 43])

n−1∑
j=0

pj(x)pj(t) =
kn−1

kn

pn(x)pn−1(t)− pn−1(x)pn(t)

x− t
, (6.15)
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where kn = (−1)n(n!
√
hn)

−1. Integration of this identity with the weight w(t) over the

interval (0,∞) yields

pn−1(x)qn(x)− pn(x)qn−1(x) =
kn

kn−1
. (6.16)

In particular,

qn(xm) =
kn

kn−1pn−1(xm)
. (6.17)

Upon combining formulas (6.13), (6.15), and (6.16) it is possible to establish the following

identity [12]:

n−1∑
j=0

pj(x)qj(t) =
kn−1

kn(t− x)
[pn(x)(qn−1(x)− qn−1(t))− pn−1(x)(qn(x)− qn(t))]. (6.18)

Therefore, the internal sum in formula (6.14) transforms to

n−1∑
j=0

pj(xm)qj(x) =
kn−1pn−1(xm)

kn(x− xm)
[qn(x)− qn(xm)]. (6.19)

Now, by substituting this expression into formula (6.14) we deduce

Iα[f ](x) =
kn−1

πkn

n∑
m=1

Amf(xm)
pn−1(xm)[qn(x)− qn(xm)]

x− xm
. (6.20)

Finally, since Qα
n(x) = π−1

√
hnqn(x) and

kn−1Am

kn
√
hnhn−1

= − xm

(n+ α)[Lα
n−1(xm)]2

, (6.21)

we derive the quadrature formula (6.2) for the singular integral (6.1). Here, we employed

an alternative formula for the Christoffel coefficients (6.12)

Am =
Γ(α+ n)xm

n!(n+ α)[Lα
n−1(xm)]2

. (6.22)

For x = xm, by the L’Hôpital’s rule we transform formula (6.2) into the form (6.5) with

Rn(x) = 0.

In the case f(x) = Mn−1(x) + r(x) we derive the representation (6.7) from (6.1) and

(6.2). �

Corollary 6.2. Let x = ξj be a zero of the function Qα
n(x) given by (6.4). Then the

quadrature formula (6.2) has the form

Iα[f ](ξj) =
1

π

n∑
m=1

Amf(xm)

xm − ξj
+Rn(ξj), (6.23)

where Am are the Christoffel coefficients given by (6.22). This formula is exact for any

polynomial f(x) of degree 2n.
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Fig. 4. The function Qα
n(x) for α = 1/3 and α = −1/2. (a): n = 5.

(b): n = 10.

Proof. As a consequence of the relation (6.17) we obtain

Qα
n(xm) = − Γ(α+ n)

πn!Lα
n−1(xm)

. (6.24)

Putting x = ξj in (6.2) and in view of Qα
n(ξj) = 0 we have formula (6.23). Since it is the

Gauss quadrature formula in the interval (0,∞) associated with the Laguerre polynomials

Lα
n(x), it is exact for any polynomial f(x)/(x− ξj) of degree 2n− 1. Therefore the last

statement of Corollary 6.2 follows. �
Remark 6.3. Our numerical tests reveal that the function Qα

n(x) has exactly n + 1

zeros in the interval (0,∞) for any values of the parameters n and α ∈ (−1, 0) ∪ (0, 1)

used. Sample curves of the function Qα
n(x) for n = 5 and n = 10 when α = 1/3 and

α = −1/2 are given in Figures 4(a) and 4(b). It is also found that the amplitude of the

function Qα
n(x) rapidly decreases as x → ∞.

Considering that a continuous function cannot be uniformly approximated in the in-

terval [0,∞) by a polynomial, it is infeasible to find an upper bound for the reminder

in formula (6.5) in the form |Rn(x)| < δn, 0 ≤ x < ∞, δn → 0, n → ∞, for the general

class of functions employed in Theorem 6.1. However, it is possible to estimate Rn(x)

for functions decaying at infinity as x−m, m > 0.



SEMI-INFINITE HILBERT TRANSFORM AND APPLICATIONS 763

Theorem 6.4. Let f(x) be a continuously differentiable function in any finite segment

[0, a], a > 0, and f(x) ∼ Cx−m, x → ∞, m > 0. For any ε > 0 define a function

gb(x) =

{
f ′(x), 0 ≤ x ≤ b,

0, x > b,
b >

m+1

√
m|C|
ε

. (6.25)

Let P ′
n−1(x) be the polynomial of best approximation for the function gb(x) in the seg-

ment [0, b] and

max
0≤x≤b

|gb(x)− P ′
n−1(x)| = en(b). (6.26)

Then the remainder Rn(x) of the quadrature formula (6.2) is estimated by

|Rn(x)| ≤ 2

(
2Γ(α+ 1)

π
+ |Qα

n(x)|
n∑

m=1

|γm|
)
ẽn(b)

≤ 2Γ(α+ 1)

(
2

π
+

n!|Qα
n(x)|

Γ(n+ α)
max

1≤m≤n
|Lα

n−1(xm)|
)
ẽn(b), 0 ≤ x < ∞, (6.27)

where ẽn(b) = max{ε, en(b)}. If x = ξj , then the remainder has the bound

|Rn(ξj)| ≤
4Γ(α+ 1)

π
ẽn(b). (6.28)

Proof. Similar to [12], rewrite formula (6.7) for the remainder in the form

Rn(x) =

n∑
m=1

γm[r(x)− r(xm)]

x− xm
[Qα

n(x)−Qα
n(xm)] +

1

π

∫ ∞

0

r(t)− r(x)

t− x
w(t)dt. (6.29)

By recalling that

γmQα
n(xm) =

Am

π
, (6.30)

we arrive at the formula

Rn(x) =
n∑

m=1

[
γmQα

n(x)−
Am

π

]
r(x)− r(xm)

x− xm
+

1

π

∫ ∞

0

r(t)− r(x)

t− x
w(t)dt. (6.31)

Now, if we take into account formula (6.26), the inequalities

|r′(x)| < |f ′(x)− gb(x)|+ |gb(x)− P ′
n−1(x)| < ε+ en(b), 0 ≤ x < ∞, (6.32)

and also the integral ∫ ∞

0

w(t)dt = Γ(α+ 1), (6.33)

we deduce the first bound in (6.27). To derive the second bound, we notice that

γmQα
n(xm) > 0,

n∑
m=1

γmQα
n(xm) =

1

π

∫ ∞

0

w(t)dt, (6.34)

and that, due to formula (6.17),

1

Qα
n(xm)

=
πn!

Γ(n+ α)
Lα
n−1(xm). (6.35)

Since Qα
n(ξj) = 0, the bound (6.28) immediately follows from (6.27). �
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Fig. 5. The integral Iα[f ](x) for α = −1/2 when the number of zeros
is n = 5 and n = 10. (a): f(x) =

√
x (in this case the integral is

expressed through the exponential integral Ei(x)). (b): f(x) = ex/2.
(c): f(x) = x

√
x. (d): f(x) =

√
x/(x+ 1).

The numerical tests implemented confirm numerical efficiency of the quadrature for-

mula (6.2). Sample curves for the integral Iα[f ](x) for α = −1/2 when the degree of the

Laguerre polynomial L
−1/2
n is n = 5 and n = 10 are shown in Figures 5(a)–5(d). In the

case of Figure 5(a), the integral can be evaluated exactly,

I−1/2[
√
t](x) =

1

π

∫ ∞

0

e−tdt

t− x
= −e−x

π
Ei(x), 0 < x < ∞, (6.36)

where

Ei(x) = γ + ln x+

∞∑
m=1

xm

mm!
(6.37)

is the exponential integral and γ ≈ 0.57721566 is the Euler constant.

7. Conclusions. We showed that the Hilbert transforms of the weighted Hermite

polynomials exp(−x2/2)Hn(x), the functions Gn(x), form a complete orthogonal sys-

tem of functions in the space L2(−∞,∞). We also discovered that the Hilbert trans-

forms in a semi-axis of the weighted Laguerre polynomials e−η/2η−1/2L
−1/2
n (x) and

e−η/2η1/2L
−1/2
n (x) up to constant factors equal the functions ξ−1/2G2m(

√
ξ) and
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G2m+1(
√
ξ), respectively. The system of functions G2n(x) and G2n+1 may be em-

ployed for solving singular integral equations or their systems of the form S[χ(t)](x) +

K[χ(t)](x) = f(x), 0 < x < ∞, in the class of integrable functions unbounded and

bounded at the point x = 0, respectively. Here, S is a singular operator with the Cauchy

kernel and K is a regular operator. The method ultimately reduces the integral equa-

tions to systems of linear algebraic equations of the second kind. If these systems are

regular or at least quasiregular, then they can be solved numerically by the reduction

method. The sufficiency of this scheme needs to be verified by means of numerical tests.

If K = 0, then the solution is exact and its representation is free of singular integrals.

This method might also be employed for vector Riemann–Hilbert problems when the

Wiener–Hopf factors are not available, and the associated system of integral equations

has the structure S[χ(t)](x) +K[χ(t)](x) = f(x), 0 < x < ∞.

By employing an integral representation of the Jacobi function of the second kind

Q
(α,β)
n (x), expressing it in terms of the hypergeometric Gauss function, and passing to

the limit n → ∞ in the representations for n−αQ
(α,β)
n (1 − 1

2z
2/n2), we obtained the

semi-infinite Hilbert transforms of the Bessel function Jα(λ
√
t) in terms of the functions

J±α(λ
√
x) and I±α(λ

√
x) in the intervals 0 < x < ∞ and −∞ < x < 0, respectively.

Here, λ is a positive parameter. We applied this result to derive a closed-form solution to

a model problem of contact mechanics. The solution is free of singular integrals, and the

associated Riemann–Hilbert problem, as the standard way of dealing with such problems,

was bypassed.

One of the most frequently applied methods for singular integral equations with the

Cauchy kernel is the collocation method. To employ it for singular integral equations

in a semi-axis, one needs to make the optimal choice of the collocation points and have

at their disposal an efficient procedure for the Cauchy integral in a semi-axis. To find

such a formula, we proposed to use the Hilbert transform of the weighted Laguerre

polynomial xαe−xLα
n(x) derived in the paper, the Gauss quadrature formula for the in-

tegral
∫ ∞
0

xαe−xf(x)dx exact for polynomials of degree not higher than 2n − 1, and

the Christoffel–Daurboux formula for the Laguerre polynomials. The quadrature for-

mula for the singular integral with the Cauchy kernel 1/(t − x) in a semi-axis with the

density tαe−tf(t) is exact for any plynomial f(t) of degree not higher than n − 1 and

requires computing the Laguerre polynomials Lα
n(x) and Lα

n−1(xm) and the confluent

hypergeometric function Φ(−n− α, 1 − α; t) at the points t = x and t = xm, where xm

(m = 1, 2, . . . , n) are the n zeros of the polynomial Lα
n(x). The numerical tests proved

efficiency of the quadrature formula.
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