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Abstract. We show that a solution to a variant of the Beckmann problem can be

obtained by studying the limit of some weighted p−Laplacian problems. More precisely,

we find a solution to the following minimization problem:

min

{∫
Ω

k d|w|+
∫
∂Ω

g− dν−−
∫
∂Ω

g+ dν+ : w ∈ Md(Ω), ν ∈ M(∂Ω), −∇·w = f+ν

}
,

where f, k, and g± are given. In addition, we connect this problem to a formulation with

Kantorovich potentials with Dirichlet boundary conditions.

1. Introduction. In this paper we consider a variant of the flow-minimization prob-

lem introduced by Beckmann in 1952 [2] as a particular case of a wider class of a convex

optimization problem, of the form min{
∫
H(w) dx : −∇ · w = f+ − f−}, for convex

H. The case H(z) = |z| is very interesting because of its equivalence with the Monge

problem which deals with the optimal way of moving points from one mass distribution

to another so that the total work done is minimized. In his work, the cost of moving one

unit of mass from x to y is measured with the Euclidean distance |x − y|, even though

many other cost functions were later studied.

Given two finite positive Borel measures f+ and f− on a compact convex domain

Ω ⊂ R
d, satisfying the mass balance condition f+(Ω) = f−(Ω), then, the classical

Monge optimal transportation problem [12] is the following:

inf

{∫
Ω

|x− T (x)| df+ : T#f
+ = f−

}
, (MP)

where T#f
+ = f− ⇔ f−(A) = f+(T−1(A)) for every Borel set A ⊂ Ω. The existence

of optimal maps was addressed by many authors [1], [5], [8], [14], and [17]. Although this

problem may have no solutions, its relaxed setting (which is the Kantorovitch problem
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[13]) always has one. The relaxed problem is the following:

min

{∫
Ω×Ω

|x− y| dγ : γ ∈ Π(f+, f−)

}
, (KP)

where

Π(f+, f−) :=
{
γ ∈ M+(Ω× Ω) : (Πx)#γ = f+ , (Πy)#γ = f− }

,

where Πx and Πy are the two projections of Ω×Ω onto Ω. The authors of [15,16] prove

that the dual of (KP) is the following:

max

{∫
Ω

u d(f+ − f−) : u ∈ Lip1(Ω)

}
. (DP)

The equality of the two optimal values implies that optimal γ and u satisfy u(x) −
u(y) = |x − y| on the support of γ, which means that the potential u decreases at the

rate one as we move along the transport ray [x, y] (note that the gradient of u gives the

direction of these transport rays). It is well known that there exists a non-negative Borel

measure σ over Ω (which is called transport density) such that (σ, u) solves a particular

PDE system, called the Monge-Kantorovitch system [15]:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−∇ · (σ∇u) = f := f+ − f− in Ω,

σ∇u · n = 0 on ∂Ω,

|∇u| ≤ 1 in Ω,

|∇u| = 1 σ − a.e.

(1.1)

This measure σ represents the amount of transport taking place in each region of Ω,

i.e., for a given Borel set A, σ(A) stands for “how much” the transport takes place in A

if particles move from their origin x to their destination y on transport rays.

In addition, the flow w := σ∇u solves the Beckmann problem (see [15]), which is the

following:

min

{∫
Ω

d|w| : w ∈ Md(Ω), −∇ · w = f+ − f−
}

(BP)

and we have the following equalities:

min (BP) = sup (DP) = min (KP).

An interesting variant of (KP), which is already present in [6,7,11], is to transport the

mass f+ to another one f− (which do not have a priori the same total mass) with the

possibility of transporting some mass to/from the boundary, paying the transport cost

that is assumed to be given by the Euclidean distance |x−y| plus an extra cost g−(y) for

each unit of mass that comes out from a point y ∈ ∂Ω or −g+(x) for each unit of mass

that enters at the point x ∈ ∂Ω. Yet, it is reasonable to consider a distance dk associated

with a Riemannian metric k (where k is supposed to be positive and continuous), instead

of the Euclidean distance, when we want to model a non-uniform cost for the movement

(due to geographical obstacles or configurations). Recall that this distance dk is defined

as follows:

dk(x, y) := inf

{∫ 1

0

k(ω(t))|ω′(t)| dt : ω ∈ Lip([0, 1],Ω), ω(0) = x, ω(1) = y

}
∀x, y ∈ Ω.
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Then, set

Πb(f+, f−) :=
{
γ ∈ M+(Ω× Ω) : ((Πx)#γ) |

◦
Ω
= f+, ((Πy)#γ) |

◦
Ω
= f−

}
.

We minimize the quantity

min

{∫
Ω×Ω

dk(x, y) dγ +

∫
∂Ω

g− d(Πy)#γ −
∫
∂Ω

g+ d(Πx)#γ :

γ ∈ Πb(f+, f−)

}
. (KPb)

First of all, we assume that g± ∈ C(∂Ω) with

g+(x)− g−(y) < dk(x, y), for all x, y ∈ ∂Ω. (1.2)

Then, from [6], we can prove that (KPb) reaches a minimum and that its dual is the

following:

max

{∫
Ω

u d(f+ − f−) : |∇u| ≤ k, g+ ≤ u ≤ g− on ∂Ω

}
. (DPb)

Note that, for this optimal transportation problem with boundary costs, the system

(1.1) becomes ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−∇ · (σ∇u) = f in Ω,

g+ ≤ u ≤ g− on ∂Ω,

|∇u| ≤ k in Ω,

|∇u| = k σ − a.e.,

(1.3)

and, the problem (BP) becomes

min

{∫
Ω

k d|w|+
∫
∂Ω

g− dν− −
∫
∂Ω

g+ dν+ : (w, ν)

∈ Md(Ω)×M(∂Ω), −∇ · w = f + ν

}
. (BPb)

In [8], the authors prove that a solution to (1.1) (or equivalently, to (BP)) can be

constructed by studying the p−Laplacian equation

−∇ · (|∇up|p−2∇up) = f

in the limit as p → ∞. In this paper, we prove that a solution to (1.3) (or equivalently,

to (BPb)) can be constructed by studying the limit as p → ∞ of the following weighted

p−Laplacian problem:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−∇ · (k−p|∇up|p−2∇up) = f in Ω,
∂up

∂n = 0 on {g+ < up < g−},
∂up

∂n ≥ 0 on {up = g+},
∂up

∂n ≤ 0 on {up = g−},
g+ ≤ up ≤ g− on ∂Ω.

(1.4)

Using this approach, We also prove the following:

min (BPb) = sup (DPb) = min (KPb).
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This paper is organized as follows. In Section 2, we introduce the weighted p−Laplacian

problems that we use to approximate a maximizer of (DPb). In Section 3, we prove

the existence of a solution to (1.3). This means that we want to find a non-negative

Borel measure σ such that (σ, u∞) solves (1.3). Finally, in Section 4, we prove that

min(BPb)= sup(DPb) and we find a minimizer to (BPb).

2. Uniform estimates on the solutions of the weighted p−Laplacian prob-

lems. In this section, the aim is to obtain estimates, independent of p, on the solution

of (1.4). First of all, we note that the unique (may be up to a constant) weak solution

up of (1.4) is found as the minimizer of the functional

Jp(u) :=
1

p

∫
Ω

k−p|∇u|p dx−
∫
Ω

uf dx

over all u ∈ W 1,p(Ω), g+ ≤ u ≤ g− on ∂Ω. Under the assumption (1.2), we have the

following.

Proposition 2.1. Let up be the solution of (1.4). Then, up to a subsequence, up → u∞
uniformly as p → ∞, where u∞ solves (DPb).

Proof. Set

v(y) := max
x∈∂Ω

{g+(x)− dk(x, y)} for all y ∈ Ω.

Then, it is easy to see that v is Lip1 according to the distance dk and then, |∇v| ≤ k.

In addition, (1.2) gives that

g+ ≤ v < g− on ∂Ω.

From the optimality of up, we have

Jp(up) ≤ Jp(v) ≤
|Ω|
p

+ C,

where C is a constant independent of p. As

g+ ≤ up ≤ g− on ∂Ω,

then, it is easy to check that

||up||L∞(Ω) ≤ C(d, diam(Ω)) ||∇up||Lp(Ω,Rd) + ||g||L∞(∂Ω).

Hence, ∫
Ω

k−p|∇up|p dx ≤ p

∫
Ω

upf dx + Cp

≤ Cp

(∫
Ω

k−p|∇up|p dx
) 1

p

+ Cp.

Yet, this implies that

(∫
Ω

k−p|∇up|p dx
) 1

p

≤ (Cp)
1
p
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and then, for m < p,

(∫
Ω

k−m|∇up|m dx

) 1
m

≤ (Cp)
1
p |Ω| 1

m− 1
p .

Hence, up to a subsequence, up ⇀ u∞ in W 1,m(Ω) for all m ∈ N
�, and then, up → u∞

uniformly in Ω. In addition, we have

(∫
Ω

k−m|∇u∞|m dx

) 1
m

≤ |Ω| 1
m for all m ∈ N

�

and then,

|∇u∞| ≤ k.

On the other hand, for any admissible function ϕ in (DPb), we have, from the opti-

mality of up, that

−
∫
Ω

upf dx ≤ Jp(up) ≤ Jp(ϕ) ≤
|Ω|
p

−
∫
Ω

ϕf dx.

When p → ∞, we infer that u∞ solves (DPb). �

3. The limit of the weighted p−Laplacian problems. For all p > d, set

wp := k−p |∇up|p−2 ∇up,

where up is the solution of (1.4). So, the aim of this section is to study the limit as

p → ∞ of (wp)p. In particular, we show that wp ⇀ w in the sense of measures and that

(σ, u∞) solves (1.3) with σ := k−1 |w|.

Lemma 3.1. For all p > d, there exists a measure νp, which is concentrated on the

boundary of Ω, such that∫
Ω

wp · ∇ϕ dx =

∫
Ω

ϕf dx +

∫
∂Ω

ϕ dνp for every ϕ ∈ W 1,p(Ω).

In addition, we have

spt ν±p ⊂ {up = g±}.

Proof. Take ϕ ∈ C∞(Ω) with

spt(ϕ) ∩ {up = g±} = ∅.

As up ∈ C(Ω), then there exists ε0 > 0 such that g+ ≤ up + εϕ ≤ g− on ∂Ω for all

|ε| < ε0. Yet, from the optimality of up, we have

Jp(up) ≤ Jp(up + εϕ)

and when ε → 0, we get ∫
Ω

wp · ∇ϕ dx =

∫
Ω

ϕf dx.
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Let ϕ± ≥ 0 be in C∞(Ω) with

spt(ϕ+) ∩ {up = g−} = ∅
and

spt(ϕ−) ∩ {up = g+} = ∅.
Working as above, we get ∫

Ω

wp · ∇ϕ+ dx ≥
∫
Ω

ϕ+f dx

and ∫
Ω

wp · ∇ϕ− dx ≤
∫
Ω

ϕ−f dx.

Now, it is easy to conclude the proof. �
Under the assumption (1.2), we have the following.

Proposition 3.2. wp ⇀ w and νp ⇀ ν in the sense of measures.

Proof. Set

v+(x) := min
y∈∂Ω

{g−(y) + dk(x, y)} for all x ∈ Ω.

Then, it is clear that g+ < v+ ≤ g− on ∂Ω and |∇v+| ≤ k. In addition, we have the

following equality:∫
Ω

wp · ∇(up − v+) dx =

∫
Ω

(up − v+)f dx +

∫
∂Ω

(up − v+) dνp.

Hence,∫
∂Ω

(v+ − up) dνp +

∫
Ω

k−p|∇up|p dx =

∫
Ω

wp · ∇v+ dx+

∫
Ω

(up − v+)f dx

≤
∫
Ω

wp · ∇v+ dx + C,

where C is a constant independent of p. As v+ − g+ ≥ c > 0 on ∂Ω, then, by Lemma

3.1, we get

c

∫
∂Ω

dν+p +

∫
Ω

k−p|∇up|p dx ≤
∫
Ω

k−(p−1)|∇up|p−2∇up · k−1∇v+ dx + C

≤ |Ω| 1p
(∫

Ω

k−p|∇up|p dx
)1− 1

p

+ C

≤
(
1− 1

p

)∫
Ω

k−p|∇up|p dx + C.

Finally, we infer that

c

∫
∂Ω

dν+p +
1

p

∫
Ω

k−p|∇up|p dx ≤ C.

Therefore, ∫
∂Ω

dν+p ≤ C.
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Replacing v+ by v−, where

v−(y) := max
x∈∂Ω

{g+(x)− dk(x, y)} for all y ∈ Ω,

we also get that ∫
∂Ω

dν−p ≤ C.

Yet, we have ∫
Ω

k−p|∇up|p dx =

∫
Ω

upf dx +

∫
∂Ω

up dνp.

Hence, the sequence (wp)p (resp., (νp)p) is bounded in Md(Ω) (resp., M(∂Ω)) and so

there exists a vector measure w (resp., a measure ν supported on ∂Ω) such that wp ⇀ w

(resp. νp ⇀ ν) in the sense of measures. �
We conclude this section by proving the existence of a solution to (1.3).

Proposition 3.3. There exists a non-negative Borel measure σ over Ω such that (σ, u∞),

where u∞ is a maximizer for (DPb), is a solution to (1.3).

Proof. By Lemma 3.1 and Proposition 3.2, for all ϕ ∈ C1(Ω), we have

∫
Ω

∇ϕ · dw =

∫
Ω

ϕf dx+

∫
∂Ω

ϕ dν. (3.1)

Set

σ := k−1|w|.

Now, consider a sequence (ϕn)n ⊂ C∞(Ω) such that ϕn → u∞ uniformly and ∇ϕn →
∇σu∞ in L2

σ(Ω,R
d), where ∇σ is the tangential gradient operator with respect to σ

defined in [4].

By (3.1), we get

∫
Ω

∇σu∞ · dw =

∫
Ω

u∞f dx +

∫
∂Ω

u∞ dν

=

∫
Ω

u∞f dx +

∫
∂Ω

g+ dν+ −
∫
∂Ω

g− dν−.

Yet,

∫
Ω

k d|w| ≤ lim inf
p

∫
Ω

k |wp| dx

= lim inf
p

∫
Ω

k−(p−1)|∇up|p−1 dx

≤ lim inf
p

|Ω| 1p
(∫

Ω

k−p|∇up|p dx
)1− 1

p

.
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In addition, we have∫
Ω

k−p|∇up|p dx =

∫
Ω

upf dx+

∫
∂Ω

up dνp

=

∫
Ω

upf dx+

∫
∂Ω

g+ dν+p −
∫
∂Ω

g− dν−p

→
∫
Ω

u∞f dx +

∫
∂Ω

g+ dν+ −
∫
∂Ω

g− dν− =

∫
Ω

∇σu∞ · dw.

Finally, we get ∫
Ω

k d|w| ≤
∫
Ω

∇σu∞ · dw.

Since |∇u∞| ≤ k, hence ∫
Ω

∇σu∞ · dw =

∫
Ω

k d|w|

and

w = σ∇σu∞ , |∇σu∞| = k σ − a.e.

�

4. Producing a solution to a variant of the Beckmann problem. Now, we are

ready to find a solution to (BPb). Let w (resp., ν) be the limit of (wp)p (resp., (νp)p) as

in Proposition 3.2. Then, we have the following.

Proposition 4.1. (w, ν) solves the problem (BPb). Moreover, the minimal value of

(BPb) equals the maximal value of (DPb).

Proof. We start from min(BPb) ≥ sup(DPb). In order to do so, take an arbitrary

function ϕ ∈ C1(Ω) with |∇ϕ| ≤ k and g+ ≤ ϕ ≤ g− on ∂Ω. Consider that for any

(v, χ) ∈ Md(Ω)×M(∂Ω) with −∇ · v = f + χ, we have∫
Ω

k d|v| ≥
∫
Ω

∇ϕ · dv =

∫
Ω

ϕ d(f + χ) ≥
∫
Ω

ϕf dx+

∫
∂Ω

g+ dχ+ −
∫
∂Ω

g− dχ−.

By an approximation argument, we can infer that∫
Ω

k d|v|+
∫
∂Ω

g− dχ− −
∫
∂Ω

g+ dχ+ ≥ sup (DPb) = min (KPb)

for any admissible (v, χ), i.e., min(BPb) ≥ sup(DPb). Yet, by Proposition 3.3, we have∫
Ω

k d|w|+
∫
∂Ω

g− dν− −
∫
∂Ω

g+ dν+ =

∫
Ω

u∞f dx.

Hence, (w, ν) solves (BPb) and we have min(BPb) = sup(DPb) = min(KPb). �

Remark 4.1. Note that, from [10], we have σ ∈ L1 as soon as f ∈ L1 and k ∈ C1,1, and

then, the following problem:

min

{∫
Ω

k|w| dx+

∫
∂Ω

g− dν−−
∫
∂Ω

g+ dν+ : w∈L1(Ω,Rd), ν∈M(∂Ω), −∇·w=f+ν

}

reaches a minimum.
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