Remote Access St. Petersburg Mathematical Journal

St. Petersburg Mathematical Journal

ISSN 1547-7371(online) ISSN 1061-0022(print)

 
 

 

Duality relations in the theory of analytic capacity


Author: S. Ya. Khavinson
Translated by: S. V. Kislyakov
Original publication: Algebra i Analiz, tom 15 (2003), nomer 1.
Journal: St. Petersburg Math. J. 15 (2004), 1-40
MSC (2000): Primary 31A15
DOI: https://doi.org/10.1090/S1061-0022-03-00800-8
Published electronically: December 31, 2003
MathSciNet review: 1979716
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: This is a survey of duality relations arising in the theory of analytic capacity and its modifications, namely, the Cauchy capacities with various types of measures. Principal attention is paid to the material not published earlier. Also, new modifications of the capacities mentioned above are treated. Linear extremal problems (such as the problem of calculating the analytic capacity of a set) are dual to approximation processes with size constraints (the size of the approximants and the rate of approximation are measured in terms of different metrics). For the new versions of capacity introduced in this paper, approximation with size constraints is extended to the case where the approximants are taken from a fixed conical wedge (rather than from a linear subspace, as it has always been before). Extremely peculiar approximation processes arise via duality from the modifications of the analytic capacity the definition of which involves positive measures (a typical example is the so-called ``positive'' analytic capacity $ \gamma ^{+} $). More precisely, in such situations it is not even required to find an approximant within a small distance from a given element. Instead, in a fixed subspace or conical wedge we seek an addition that brings the above element to a fixed cone. Moreover, this addition must be as small as possible in a certain sense.

Extension of the collection of relations for the analytic capacity and its modifications, and comparison of various relations of this sort make it possible to better understand exceptional sets arising in various branches of holomorphic function theory. In particular, some information is obtained about possible approximation processes on null-sets in the sense of a particular capacity.


References [Enhancements On Off] (What's this?)

  • 1. L. Ahlfors, Bounded analytic functions, Duke Math. J. 14 (1947), no. 1, 1-11. MR 9:24a
  • 2. J. Garnett, Analytic capacity and measure, Lecture Notes in Math., vol. 297, Springer-Verlag, Berlin-New York, 1972. MR 56:12257
  • 3. -, Bounded analytic functions, Pure Appl. Math., vol. 96, Academic Press, Inc., New York-London, 1981. MR 83g:30037
  • 4. Th. W. Gamelin, Uniform algebras, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1969. MR 53:14137
  • 5. A. G. Vitushkin, Analytic capacity of sets in problems of approximation theory, Uspekhi Mat. Nauk 22 (1967), no. 6, 141-199; English transl., Russian Math. Surveys 22 (1967), no. 6, 139-200. MR 37:5404
  • 6. -, Uniform approximations by holomorphic functions, Itogi Nauki i Tekhniki Ser. Sovrem. Probl. Mat., vol. 4, VINITI, Moscow, 1975, pp. 5-12; English transl., J. Soviet Math. 5 (1976), no. 5, 607-611. MR 58:6350
  • 7. S. Ya. Khavinson, Supplementary questions of the theory of removable singularities of analytic functions, Moskov. Inzh.-Stroit. Inst. (Fak. povysheniya kvalif.), Moscow, 1982. (Russian)
  • 8. -, Golubev sums: a theory of extremal problems that are of the analytic capacity problem type and of accompanying approximation processes, Uspekhi Mat. Nauk 54 (1999), no. 4, 75-142; English transl., Russian Math. Surveys 54 (1999), no. 4, 753-818. MR 2001b:30041
  • 9. L. Zalcman, Analytic capacity and rational approximation, Lecture Notes in Math., vol. 50, Springer-Verlag, Berlin-New York, 1968. MR 37:3018
  • 10. A. A. Gonchar and S. N. Mergelyan, Approximation theory for functions of a complex variable, History of Mathematics in Russia. Vol. 4. Book 1, ``Naukova Dumka'', Kiev, 1970, pp. 112-193. (Russian)
  • 11. M. S. Mel'nikov and S. O. Sinanyan, Aspects of approximation theory for functions of one complex variable, Itogi Nauki i Tekhniki Ser. Sovrem. Probl. Mat., vol. 4, VINITI, Moscow, 1975, pp. 143-250; English transl., J. Soviet Math. 5 (1976), no. 5, 688-750.
  • 12. S. Ya. Khavinson, Representation and approximation of functions on thin sets, Contemporary Problems in Theory Anal. Functions (Internat. Conf., Erevan, 1965), ``Nauka'', Moscow, 1966, pp. 314-318. (Russian) MR 35:1808
  • 13. M. S. Mel'nikov, Analytic capacity: a discrete approach and the curvature of measures, Mat. Sb. 186 (1995), no. 6, 57-76; English transl., Sb. Math. 186 (1995), no. 6, 827-846. MR 96f:30020
  • 14. A. P. Calderón, Cauchy integrals on Lipschitz curves and related operators, Proc. Nat. Acad. Sci. U.S.A. 74 (1977), 1324-1327. MR 57:6445
  • 15. G. David, Analytic capacity, Calderón-Zygmund operators, and rectifiability, Publ. Mat. 43 (1999), 3-25. MR 2000e:30044
  • 16. X. Tolsa, Curvature of measures, Cauchy singular integral, and analytic capacity, Thesis, Univ. Autònoma Barcelona, Barcelona, 1998.
  • 17. -, The semiadditivity of analytic capacity, Preprint, 2001, pp. 1-39.
  • 18. P. R. Garabedian, Schwarz's lemma and the Szegö kernel function, Trans. Amer. Math. Soc. 67 (1949), 1-35. MR 11:340f
  • 19. -, The classes $L_p$ and conformal mapping, Trans. Amer. Math. Soc. 69 (1950), 392-415. MR 12:492a
  • 20. S. Ya. Khavinson, The analytic capacity of plane sets, some classes of analytic functions, and the extremum function in Schwarz's lemma for arbitrary regions, Dokl. Akad. Nauk SSSR 128 (1959), no. 5, 896-898. (Russian) MR 22:9605
  • 21. -, The analytic capacity of sets as related to mass distributions, Dokl. Akad. Nauk SSSR 128 (1959), no. 6, 1129-1131. (Russian) MR 22:9606
  • 22. -, The analytic capacity of sets related to non-triviality of various classes of analytic functions, and on Schwarz's lemma in arbitrary domains, Mat. Sb. (N. S.) 54 (1961), 3-50. (Russian) MR 25:182
  • 23. -, Approximation on sets of zero analytic capacity, Dokl. Akad. Nauk SSSR 131 (1960), no. 1, 44-46; English transl., Soviet Math. Dokl. 1 (1960), 205-207. MR 23:A1045
  • 24. V. P. Khavin, On the space of bounded regular functions, Dokl. Akad. Nauk SSSR 131 (1960), no. 1, 40-43; English transl., Soviet Math. Dokl. 1 (1960), 202-204. MR 22:11277
  • 25. -, On the space of bounded regular functions, Sibirsk. Mat. Zh. 2 (1961), no. 4, 622-638. (Russian) MR 25:2425
  • 26. R. È. Val'skii, Some remarks on bounded functions representable by an integral of Cauchy-Stieltjes type, Sibirsk. Mat. Zh. 7 (1966), no. 2, 252-260. (Russian) MR 33:4289
  • 27. T. Murai, Analytic capacity and the Szegö kernel function, Linear and Complex Analysis. Problem Book 3. Pt. 2, Lecture Notes in Math., vol. 1574, Springer-Verlag, Berlin, 1994, pp. 158-160. MR 96c:00001b
  • 28. -, Construction of $H^1$ functions concerning the estimate of analytic capacity, Bull. London Math. Soc. 19 (1987), 154-160. MR 88d:30034
  • 29. N. Suita, On a metric induced by analytic capacity, K ${\bar{\text{o}}}$dai Math. Sem. Rep. 25 (1973), 215-218. MR 47:7024
  • 30. S. Ya. Khavinson, On approximation with account taken of the size of the coefficients of the approximants, Trudy Mat. Inst. Steklov. 60 (1961), 304-324. (Russian) MR 25:183
  • 31. Ph. Davis and K. Fan, Complete sequences and approximations in normed linear spaces, Duke Math. J. 24 (1957), no. 2, 183-192. MR 19:30d
  • 32. S. Ya. Khavinson, Some problems concerning the completeness of systems, Dokl. Akad. Nauk SSSR 137 (1961), no. 4, 793-796; English transl., Soviet Math. Dokl. 2 (1961), 358-361. MR 23:A1044
  • 33. -, Some approximation theorems involving the values of the coefficients of the approximating functions, Dokl. Akad. Nauk SSSR 196 (1971), no. 6, 1283-1286; English transl., Soviet Math. Dokl. 12 (1971), 366-370. MR 45:784
  • 34. -, A notion of completeness that takes into account the magnitude of the coefficients of the approximating polynomials, Izv. Akad. Nauk Armyan. SSR Ser. Mat. 6 (1971), no. 2-3, 221-234. (Russian) MR 45:5641
  • 35. -, Complete systems in Banach spaces, Izv. Akad. Nauk Armyan. SSR Ser. Mat. 20 (1985), no. 2, 89-111; English transl., Soviet J. Contemporary Math. Anal. 20 (1985), no. 2, 1-26. MR 87f:46029
  • 36. M. G. Krein, $L$-problem in abstract linear normed space, N. I. Akhiezer and M. G. Krein. Some Questions in the Theory of Moments, GONTI USSR, Khar'kov, 1938, pp. 171-200; English transl., Amer. Math. Soc., Providence, RI, 1962. MR 29:5073
  • 37. S. M. Nikol'skii, Approximation of functions in the mean by trigonometric polynomials, Izv. Akad. Nauk SSSR Ser. Mat. 10 (1946), no. 3, 207-256. (Russian) MR 8:149b
  • 38. A. L. Garkavi, Duality theorems for approximation by elements of convex sets, Uspekhi Mat. Nauk 16 (1961), no. 4, 141-145; English transl. in Russian Math. Surveys 16 (1961), no. 4. MR 24:A2828
  • 39. V. M. Tikhomirov, Some questions in approximation theory, Moskov. Univ., Moscow, 1976. (Russian) MR 58:6822
  • 40. N. P. Korneichuk, Extremal problems of approximation theory, ``Nauka'', Moscow, 1976. (Russian) MR 56:6244
  • 41. P.-J. Laurent, Approximation et optimisation, Hermann, Paris, 1972. MR 57:6947
  • 42. E. G. Gol'shtein, Duality theory in mathematical programming and its applications, ``Nauka'', Moscow, 1971; German transl., Akademie-Verlag, Berlin, 1975. MR 48:893
  • 43. S. Ya. Khavinson and E. Sh. Chatskaya, Duality relations and criteria for best approximation elements, Moskov. Inzh.-Stroit. Inst. (Fak. povysheniya kvalif.), Moscow, 1976. (Russian)
  • 44. M. M. Day, Normed linear spaces, Springer-Verlag, Berlin etc., 1958. MR 20:1187
  • 45. N. Dunford and J. Schwartz, Linear operators. I. General theory, Interscience Publishers, New York-London, 1958. MR 22:8302
  • 46. S. Ya. Khavinson, Factorization of analytic functions in finitely connected domains, Moskov. Inzh.-Stroit. Inst. (Fak. povysheniya kvalif.), Moscow, 1981. (Russian)
  • 47. I. I. Privalov, Boundary properties of analytic functions, Gos. Izdat. Tekhn.-Teor. Lit., Moscow-Leningrad, 1950. (Russian) MR 13:926h
  • 48. P. R. Halmos, Measure theory, D. Van Nostrand Co., Inc., New York, NY, 1950. MR 11:504d
  • 49. S. Saks, Theory of the integral, 2nd ed., Dover Publications, Inc., New York, 1964. MR 29:4850
  • 50. M. V. Samokhin, On the representability of the Ahlfors function by a Cauchy potential, Nauchn. Vestnik Moskov. Univ. Grazhdan. Aviatsii, Moscow, 1999, pp. 55-59. (Russian)
  • 51. -, On the Cauchy integral formula in domains of arbitrary connectivity, Mat. Sb. 191 (2000), no. 8, 113-130; English transl., Sb. Math. 191 (2000), no. 7-8, 1215-1231. MR 2001h:46095
  • 52. L. Carleson, Selected problems on exceptional sets, Van Nostrand Math. Stud., vol. 13, Van Nostrand Co., Inc., Princeton, NJ etc., 1967. MR 37:1576
  • 53. M. V. Samokhin, Extremal problems for bounded analytic functions and for the classes $E_p$ in arbitrary domains, Sb. Trudov Moskov. Inzh.-Stroit. Inst. No. 153 (1977), 35-48. (Russian)
  • 54. G. David, Unrectifiable $1$-sets have vanishing analytic capacity, Rev. Mat. Iberoamericana 14 (1998), no. 2, 369-479. MR 99i:42018
  • 55. F. Nazarov, S. Treil, and A. Volberg, $T(b)$-theorem and analytical capacity, Preprint, 1998.
  • 56. L. A. Rubel and A. L. Shields, The space of bounded analytic functions on a region, Ann. Inst. Fourier (Grenoble) 16 (1966), no. 1, 235-277. MR 33:6440
  • 57. P. S. Aleksandrov and A. N. Kolmogorov, Introduction to the general theory of sets and functions, Gos. Izdat. Tekhn.-Teor. Lit., Moscow-Leningrad, 1948; German transl., VEB Deutscher Verlag Wiss., Berlin, 1956. MR 12:682f
  • 58. M. A. Naimark, Normed rings, Gos. Izdat. Tekhn.-Teor. Lit., Moscow, 1956; English transl., Wolters-Noordhoff Publishing, Groningen, 1970. MR 19,870d; MR 50:8075

Similar Articles

Retrieve articles in St. Petersburg Mathematical Journal with MSC (2000): 31A15

Retrieve articles in all journals with MSC (2000): 31A15


Additional Information

DOI: https://doi.org/10.1090/S1061-0022-03-00800-8
Keywords: Analytic capacity, Cauchy capacity, approximation with size constraints, exceptional sets
Received by editor(s): May 10, 2002
Published electronically: December 31, 2003
Additional Notes: Supported by RFBR (grant no. 01-01-00608) and by the RF Ministry of Education (grant E 00-1.0-199).
Article copyright: © Copyright 2003 American Mathematical Society

American Mathematical Society