Remote Access St. Petersburg Mathematical Journal

St. Petersburg Mathematical Journal

ISSN 1547-7371(online) ISSN 1061-0022(print)

 
 

 

Uniqueness theorem and singular spectrum in the Friedrichs model near a singular point


Author: S. I. Yakovlev
Translated by: the author
Original publication: Algebra i Analiz, tom 15 (2003), nomer 1.
Journal: St. Petersburg Math. J. 15 (2004), 149-164
MSC (2000): Primary 47B06, 47B25
DOI: https://doi.org/10.1090/S1061-0022-03-00807-0
Published electronically: December 31, 2003
MathSciNet review: 1979723
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A uniqueness theorem is proved for a class of analytic functions with positive imaginary part that admit representation in a special form. This theorem imposes some restrictions on the character of decay of these functions in the vicinity of their zeros. As an application, the density of the point spectrum and the singular continuous spectrum are described for selfadjoint operators in the Friedrichs model near a singular point.


References [Enhancements On Off] (What's this?)

  • 1. L. D. Faddeev, On a model of Friedrichs in the theory of perturbations of the continuous spectrum, Trudy Mat. Inst. Steklov. 73 (1964), 292-313; English transl., Amer. Math. Soc. Transl. (2), vol. 62, Amer. Math. Soc., Providence, RI, 1967, pp. 177-203. MR 31:2620
  • 2. B. S. Pavlov and S. V. Petras, The singular spectrum of a weakly perturbed multiplication operator, Funktsional. Anal. i Prilozhen. 4 (1970), no. 2, 54-61; English transl., Funct. Anal. Appl. 4 (1970), no. 2, 136-142. MR 42:892
  • 3. S. N. Naboko, Uniqueness theorems for operator-valued functions with positive imaginary part and the singular spectrum in the selfadjoint Friedrichs model, Dokl. Akad. Nauk SSSR 275 (1984), no. 6, 1310-1313; English transl., Soviet Math. Dokl. 29 (1984), no. 2, 388-391. MR 86a:47027
  • 4. -, Uniqueness theorems for operator-valued functions with positive imaginary part, and the singular spectrum in the selfadjoint Friedrichs model, Ark. Mat. 25 (1987), no. 1, 115-140. MR 89e:47028
  • 5. Ya. V. Mikityuk, The singular spectrum of selfadjoint operators, Dokl. Akad. Nauk SSSR 303 (1988), no. 1, 33-36; English transl., Soviet Math. Dokl. 38 (1989), no. 3, 472-475. MR 90f:47032
  • 6. S. I. Yakovlev, Perturbations of a singular spectrum in a selfadjoint Friedrichs model, Vestnik Leningrad. Univ. Mat. Mekh. Astronom. 1990, vyp. 1, 116-117; English transl., Vestnik Leningrad Univ. Math. 23 (1990), no. 1, 73-75. MR 92e:47036
  • 7. S. N. Naboko and S. I. Yakovlev, Conditions for the finiteness of the singular spectrum in a selfadjoint Friedrichs model, Funktsional. Anal. i Prilozhen. 24 (1990), no. 4, 88-89; English transl., Funct. Anal. Appl. 24 (1990), no. 4, 338-340 (1991).
  • 8. S. I. Yakovlev, On the structure of the singular spectrum in a selfadjoint Friedrichs model, Leningrad, 1991. (Manuscript deposited in VINITI, no. 2050-V, 17.05.91). (Russian)
  • 9. E. M. Dyn'kin, S. N. Naboko, and S. I. Yakovlev, A finiteness bound for the singular spectrum in a selfadjoint Friedrichs model, Algebra i Analiz 3 (1991), no. 2, 77-90; English transl., St. Petersburg Math. J. 3 (1992), no. 2, 299-313. MR 93d:47028
  • 10. S. I. Yakovlev, The finiteness bound for the singular spectrum in a neighborhood of a singular point of operators of the Friedrichs model, Algebra i Analiz 10 (1998), no. 4, 210-237; English transl., St. Petersburg Math. J. 10 (1999), no. 4, 715-731. MR 99k:47058
  • 11. -, On the singular spectrum of operators of the Friedrichs model in a neighborhood of a singular point, Funktsional. Anal. i Prilozhen. 32 (1998), no. 3, 91-94; English transl., Funct. Anal. Appl. 32 (1998), no. 3, 214-217 (1999). MR 99k:47057
  • 12. A. Beurling, Ensembles exceptionnels, Acta Math. 72 (1940), 1-13. MR 1:226a
  • 13. L. Carleson, Sets of uniqueness for functions regular in the unit circle, Acta Math. 87 (1952), 325-345. MR 14:261a
  • 14. R. Hunt, B. Muckenhoupt, and R. Wheeden, Weighted norm inequalities for the conjugate function and Hilbert transform, Trans. Amer. Math. Soc. 176 (1973), 227-251. MR 47:701
  • 15. P. Koosis, Introduction to $H^p$ spaces. With an appendix on Wolff's proof of the corona theorem, London Math. Soc. Lecture Note Ser., vol. 40, Cambridge Univ. Press, Cambridge-New York, 1980. MR 81c:30062
  • 16. B. S. Pavlov, A uniqueness theorem for functions with a positive imaginary part, Spectral Theory. Wave Processes, Probl. Mat. Fiz., No. 4, Leningrad. Univ., Leningrad, 1970, pp. 118-124; English transl., Topics in Math. Phys., vol. 4, Consultants Bureau, New York-London, 1971, pp. 107-112. MR 42:4740

Similar Articles

Retrieve articles in St. Petersburg Mathematical Journal with MSC (2000): 47B06, 47B25

Retrieve articles in all journals with MSC (2000): 47B06, 47B25


Additional Information

S. I. Yakovlev
Affiliation: Departamento de Matematicas, Universidad Simon Bolivar, Apartado Postal 89000 Caracas 1080-A, Venezuela
Email: iakovlev@mail.ru; serguei@usb.ve

DOI: https://doi.org/10.1090/S1061-0022-03-00807-0
Keywords: Analytic functions, real roots, Hilbert transform, singular point, uniqueness theorem, Friedrichs model, singular spectrum, eigenvalues, measure, Lipschitz class
Received by editor(s): June 19, 2002
Published electronically: December 31, 2003
Article copyright: © Copyright 2003 American Mathematical Society

American Mathematical Society