Remote Access St. Petersburg Mathematical Journal

St. Petersburg Mathematical Journal

ISSN 1547-7371(online) ISSN 1061-0022(print)

 
 

 

Linearly similar Szökefalvi-Nagy-Foias model in a domain


Author: D. V. Yakubovich
Translated by: V. V. Kapustin
Original publication: Algebra i Analiz, tom 15 (2003), nomer 2.
Journal: St. Petersburg Math. J. 15 (2004), 289-321
MSC (2000): Primary 47A45
DOI: https://doi.org/10.1090/S1061-0022-04-00811-8
Published electronically: January 30, 2004
MathSciNet review: 2052133
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. D. Z. Arov, Passive linear steady-state dynamical systems, Sibirsk. Mat. Zh. 20 (1979), no. 2, 211-228; English transl., Siberian Math. J. 20 (1979), no. 2, 149-162. MR 80g:93031
  • 2. D. Z. Arov and M. A. Nudel'man, Tests for similarity of all minimal passive realizations of a given transfer function (scattering and resistance matrix), Mat. Sb. 193 (2002), no. 6, 3-24; English transl., Sb. Math. 193 (2002), 791-810. MR 2003k:47020
  • 3. V. I. Vasyunin and S. Kupin, Criteria for the similarity of a dissipative integral operator to normal operator, Algebra i Analiz 13 (2001), no. 3, 65-104; English transl., St. Petersburg Math. J. 13 (2002), no. 3, 389-416. MR 2003g:47034
  • 4. I. Ts. Gokhberg and M. G. Krein, On a description of contraction operators similar to unitary ones, Funktsional. Anal. i Prilozhen. 1 (1967), no. 1, 38-60. (Russian) MR 35:4761
  • 5. G. M. Gubreev, Spectral theory of regular quasi-exponentials and regular $B$-representable vector functions (the projection method: 20 years later), Algebra i Analiz 12 (2000), no. 6, 1-97; English transl., St. Petersburg Math. J. 12 (2001), no. 6, 875-947. MR 2002j:47035
  • 6. V. V. Kapustin, Spectral analysis of almost unitary operators, Algebra i Analiz 13 (2001), no. 5, 44-68; English transl., St. Petersburg Math. J. 13 (2002), no. 5, 739-756. MR 2003i:47039
  • 7. A. L. Likhtarnikov and V. A. Yakubovich, A frequency theorem for equations of evolution type, Sibirsk. Mat. Zh. 17 (1976), no. 5, 1069-1085; English transl., Siberian Math. J. 17 (1976), no. 5, 790-803 (1977). MR 55:3459
  • 8. M. M. Malamud, A criterion for a closed operator to be similar to a selfadjoint operator, Ukrain. Mat. Zh. 37 (1985), no. 1, 49-56; English transl., Ukrainian Math. J. 37 (1985), no. 1, 41-48. MR 86m:47016
  • 9. -, On the similarity of a triangular operator to a diagonal operator, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 270 (2000), 201-241; English transl., J. Math. Sci. (New York) 115 (2003), no. 2, 2199-2222. MR 2001m:47032
  • 10. S. N. Naboko, Functional model of perturbation theory and its applications to scattering theory, Trudy Mat. Inst. Steklov. 147 (1980), 86-114; English transl. in Proc. Steklov Inst. Math. 1981, no. 2. MR 82d:47012
  • 11. -, Conditions for similarity to unitary and selfadjoint operators, Funktsional. Anal. i Prilozhen. 18 (1984), no. 1, 16-27; English transl., Functional Anal. Appl. 18 (1984), no. 1, 13-22. MR 85m:47010
  • 12. S. N. Naboko and M. M. Faddeev, Operators of the Friedrichs model that are similar to a selfadjoint operator, Vestnik Leningrad. Univ. Fiz. Khim. 1990, vyp. 4, 78-82. (Russian) MR 93d:47027
  • 13. N. K. Nikol'skii, Treatise on the shift operator. Spectral function theory, ``Nauka'', Moscow, 1980; English transl., Grundlehren Math. Wiss., vol. 273, Springer-Verlag, Berlin, 1986. MR 82i:47013; MR 87i:47042
  • 14. B. S. Pavlov, Conditions for separation of the spectral components of a dissipative operator, Izv. Akad. Nauk SSSR Ser. Mat. 39 (1975), no. 1, 123-148; English transl. in Math. USSR-Izv. 9 (1975). MR 51:1452
  • 15. -, Nonphysical sheet for perturbed Jacobian matrices, Algebra i Analiz 6 (1994), no. 3, 185-199; English transl., St. Petersburg Math. J. 6 (1995), no. 3, 619-633. MR 95k:47015
  • 16. I. I. Privalov, Boundary properties of analytic functions, GITTL, Moscow-Leningrad, 1950. (Russian) MR 13:926h
  • 17. V. A. Ryzhov, Absolutely continuous and singular subspaces of a nonselfadjoint operator, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 222 (1995), 163-202; English transl., J. Math. Sci. (New York) 87 (1997), no. 5, 3886-3911. MR 96k:47015
  • 18. L. A. Sakhnovich, Dissipative operators with absolutely continuous spectrum, Trudy Moskov. Mat. Obshch. 19 (1968), 211-270; English transl., Trans. Moscow Math. Soc. 19 (1968), 233-297. MR 40:3350
  • 19. B. M. Solomyak, A functional model for dissipative operators. A coordinate-free approach, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 178 (1989), 57-91; English transl., J. Soviet Math. 61 (1992), no. 2, 1981-2002. MR 91c:47018
  • 20. B. Sz.-Nagy and C. Foias, Harmonic analysis of operators on Hilbert space, North-Holland, Amsterdam-London, 1970. MR 43:947
  • 21. S. I. Fedorov, On harmonic analysis in a multiply connected domain and character-automorphic Hardy space, Algebra i Analiz 9 (1997), no. 2, 192-240; English transl., St. Petersburg Math. J. 9 (1998), no. 2, 339-378. MR 99d:32046
  • 22. A. V. Shtraus, Characteristic functions of linear operators, Izv. Akad. Nauk SSSR Ser. Mat. 24 (1960), no. 1, 43-74. (Russian) MR 25:4363
  • 23. E. Hille and R. S. Phillips, Functional analysis and semigroups, Amer. Math. Soc. Colloq. Publ., vol. 31, Amer. Math. Soc., Providence, RI, 1957. MR 19:664d
  • 24. V. A. Yakubovich, The frequency theorem for the case in which the state space and the control space are Hilbert spaces, and its application in certain problems in the synthesis of optimal control. II, Sibirsk. Mat. Zh. 16 (1975), no. 5, 1081-1102; English transl., Siberian Math. J. 16 (1975), no. 5, 828-845 (1976). MR 57:13636
  • 25. D. Alpay and V. Vinnikov, Finite dimensional de Branges spaces on Riemann surfaces, J. Funct. Anal. 189 (2002), no. 2, 283-324. MR 2003f:47038
  • 26. D. Z. Arov and M. A. Nudelman, Passive linear stationary dynamical scattering systems with continuous time, Integral Equations Operator Theory 24 (1996), 1-45. MR 96k:47016
  • 27. Z. Arova, On $J$-unitary nodes with strongly regular $J$-inner characteristic functions in the Hardy class $H^{n\times n}_{2}$, Operator Theoretical Methods (Timisoara, 1998), Theta Found., Bucharest, 2000, pp. 29-38. MR 2001d:47018
  • 28. S. A. Avdonin and S. A. Ivanov, Families of exponentials. The method of moments in controllability problems for distributed parameter systems, Cambridge Univ. Press, Cambridge, 1995. MR 97b:93002
  • 29. J. A. Ball, A lifting theorem for operator models of finite rank on multiply connected domains, J. Operator Theory 1 (1979), 3-25. MR 80i:47013
  • 30. J. A. Ball and N. Cohen, De Branges-Rovnyak operator models and systems theory: a survey, Topics in Matrix and Operator Theory (Rotterdam, 1989), Oper. Theory Adv. Appl., vol. 50, Birkhäuser, Basel, 1991, pp. 93-136. MR 93a:47011
  • 31. N.-E. Benamara and N. Nikolski, Resolvent tests for similarity to a normal operator, Proc. London Math. Soc. (3) 78 (1999), no. 3, 585-626. MR 2000c:47006
  • 32. L. de Branges and J. Rovnyak, Canonical models in quantum scattering theory, Perturbation Theory and its Application in Quantum Mechanics (Madison, 1965), Wiley, New York, 1966, pp. 295-392. MR 39:6109
  • 33. D. N. Clark, On a similarity theory for rational Toeplitz operators, J. Reine Angew. Math. 320 (1980), 6-31. MR 82h:47025
  • 34. R. F. Curtain and H. J. Zwart, An introduction to infinite-dimensional linear systems theory, Texts Appl. Math., vol. 21, Springer-Verlag, New York, 1995. MR 96i:93001
  • 35. R. Datko, Extending a theorem of A. M. Lyapunov to Hilbert space, J. Math. Anal. Appl. 32 (1970), 610-616. MR 2:3614
  • 36. P. L. Duren, Theory of $H^{p}$-spaces, Pure Appl. Math., vol. 38, Academic Press, New York-London, 1970. MR 42:3552
  • 37. H. Dym, On Riccati equations and reproducing kernel spaces, Recent Advances in Operator Theory (Groningen, 1998), Oper. Theory Adv. Appl., vol. 124, Birkhäuser, Basel, 2001, pp. 189-215. MR 2003d:47016
  • 38. C. Foias and A. E. Frazho, The commutant lifting approach to interpolation problems, Oper. Theory Adv. Appl., vol. 44, Birkhäuser, Basel, 1990. MR 92k:47033
  • 39. P. A. Fuhrmann, Linear systems and operators in Hilbert space, McGraw-Hill, New York, 1981. MR 83d:47001
  • 40. -, A polynomial approach to linear algebra, Springer-Verlag, New York, 1996. MR 98a:15001
  • 41. M. Hasumi, Invariant subspace theorems for finite Riemann surfaces, Canad. J. Math. 18 (1966), 240-255. MR 32:8200
  • 42. B. Jacob and J. R. Partington, The Weiss conjecture on admissibility of observation operators for contraction semigroups, Integral Equations Operator Theory 40 (2001), 231-243. MR 2002e:47092
  • 43. B. Jacob, J. R. Partington, and S. Pott, Conditions for admissibility of observation operators and boundedness of Hankel operators (to appear).
  • 44. M. A. Kaashoek and S. M. Verduyn Lunel, Characteristic matrices and spectral properties of evolutionary systems, Trans. Amer. Math. Soc. 334 (1992), 479-517. MR 93e:47015
  • 45. N. J. Kalton and C. Le Merdy, Solution of a problem of Peller concerning similarity, J. Operator Theory 47 (2002), 379-387. MR 2003e:47043
  • 46. V. Komornik, Exact controllability and stabilization. The multiplier method, RAM Res. Appl. Math., Masson, Paris; Wiley and Sons, Ltd., Chichester, 1994. MR 96m:93003
  • 47. S. Kupin, Linear resolvent growth test for similarity of a weak contraction to a normal operator, Ark. Mat. 39 (2001), 95-119. MR 2002b:47008
  • 48. S. Kupin and S. Treil, Linear resolvent growth of a weak contraction does not imply its similarity to a normal operator, Illinois J. Math. 45 (2001), no. 1, 229-242. MR 2002h:47006
  • 49. C. Le Merdy, On dilation theory for $C^{0}$-semigroups on Hilbert space, Indiana Univ. Math. J. 45 (1996), no. 4, 945-959. MR 98f:47009
  • 50. -, The similarity problem for bounded analytic semigroups on Hilbert space, Semigroup Forum 56 (1998), 205-224. MR 99h:47048
  • 51. -, The Weiss conjecture for bounded analytic semigroups (to appear).
  • 52. -, A bounded compact semigroup on Hilbert space not similar to a contraction one, Semigroups of Operators: Theory and Applications (Newport Beach, CA, 1998), Progr. Nonlinear Differential Equations Appl., vol. 42, Birkhäuser, Basel, 2000, pp. 213-216. MR 2001i:47066
  • 53. -, Similarities of $\omega $-accretive operators, Prépubl. Lab. Math. Besançon no. 2002/07, Univ. France Comté, Centre Nat. Rech. Sci., Besançon, 2002.
  • 54. J.-L. Lions, Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués. vols. 1, 2, Rech. Math. Appl., vols. 8, 9, Masson, Paris, 1988. MR 90a:49040; MR 89k:93017
  • 55. M. S. Livsic, N. Kravitsky, A. S. Markus, and V. Vinnikov, Theory of commuting nonselfadjoint operators, Math. Appl., vol. 332, Kluwer Acad. Publishers Group, Dordrecht, 1995. MR 96m:47003
  • 56. S. M. Verduyn Lunel and D. V. Yakubovich, A functional model approach to linear neutral functional-differential equations, Integral Equations Operator Theory 27 (1997), 347-378. MR 98g:34127
  • 57. A. McIntosh, Operators which have an $H^{\infty }$ functional calculus, Miniconference on Operator Theory and Partial Differential Equations (North Ryde, 1986), Proc. Centre Math. Anal. Austral Nat. Univ., vol. 14, Austral. Nat. Univ., Canberra, 1986, pp. 210-231. MR 88k:47019
  • 58. S. McCullough, Commutant lifting on a two holed domain, Integral Equations Operator Theory 35 (1999), no. 1, 65-84. MR 2000e:47015
  • 59. N. K. Nikolski, Contrôlabilité à une renormalisation près et petits opérateurs de controle, J. Math. Pures Appl. (9) 77 (1998), no. 5, 439-479. MR 99f:93014
  • 60. N. K. Nikolski and V. I. Vasyunin, Elements of spectral theory in terms of the free function model. I. Basic constructions, Holomorphic Spaces (Berkeley, CA, 1995), Math. Sci. Res. Inst. Publ., vol. 33, Cambridge Univ. Press, Cambridge, 1998, pp. 211-302. MR 99e:47001
  • 61. N. K. Nikolski, Operators, functions, and systems: an easy reading. Vol. 1. Hardy, Hankel, and Toeplitz. Vol. 2. Model operators and systems, Math. Surveys Monogr., vols. 92, 93, Amer. Math. Soc., Providence, RI, 2002. MR 2003i:47001a; MR 2003i:47001b
  • 62. V. I. Paulsen, Completely bounded maps and dilations, Pitman Res. Notes Math. Ser., vol. 146, Longman; Wiley, New York, 1986. MR 88h:46111
  • 63. A. Pazy, Semigroups of linear operators and applications to partial differential equations, Appl. Math. Sci., vol. 44, Springer-Verlag, New York, 1983. MR 85g:47061
  • 64. G. Pisier, A polynomially bounded operator on Hilbert space which is not similar to a contraction, J. Amer. Math. Soc. 10 (1997), no. 2, 351-369. MR 97f:47002
  • 65. A. J. Pritchard and D. Salamon, The linear quadratic control problem for infinite-dimensional systems with unbounded input and output operators, SIAM J. Control Optim. 25 (1987), 121-144. MR 88a:93041
  • 66. O. Staffans, Quadratic optimal control of well-posed linear systems, SIAM J. Control Optim. 37 (1999), 131-164. MR 2000i:93046
  • 67. O. Staffans and G. Weiss, Transfer functions of regular linear systems. II. The system operator and the Lax-Phillips semigroup, Trans. Amer. Math. Soc. 354 (2002), no. 8, 3229-3262. MR 2003b:93051
  • 68. V. I. Vasyunin and N. G. Makarov, A model for noncontractions and stability of the continuous spectrum, Complex Analysis and Spectral Theory (Leningrad, 1979/1980), Lecture Notes in Math., vol. 864, Springer, Berlin-New York, 1981, pp. 365-412. MR 84c:47013
  • 69. M. Voichick, Invariant subspaces on Riemann surfaces, Canad. J. Math. 18 (1966), 399-403. MR 32:8201
  • 70. G. Weiss, Admissible observation operators for linear semigroups, Israel J. Math. 65 (1989), 17-43. MR 90g:47082
  • 71. -, Admissibility of unbounded control operators, SIAM J. Control Optim. 27 (1989), 527-545. MR 90c:93060
  • 72. D. Xia, On the kernels associated with a class of hyponormal operators, Integral Equations Operator Theory 6 (1983), no. 3, 444-452. MR 85c:47025
  • 73. D. V. Yakubovich, Spectral properties of smooth finite rank perturbations of a planar Lebesgue spectrum cyclic normal operator, Report no. 15 (1990/91), Inst. Mittag-Leffler, Stockholm.
  • 74. -, Spectral properties of smooth perturbations of normal operators with planar Lebesgue spectrum, Indiana Univ. Math. J. 42 (1993), 55-83. MR 94i:47025
  • 75. -, Dual piecewise analytic bundle shift models of linear operators, J. Funct. Anal. 136 (1996), no. 2, 294-330. MR 97b:47024
  • 76. -, A similarity version of the Nagy-Foias model, duality and exact controllability, 17th International Conference on Operator Theory (Timisoara, 1998): Abstracts of Reports.
  • 77. -, Subnormal operators of finite type. II. Structure theorems, Rev. Mat. Iberoamericana 14 (1998), no. 3, 623-681. MR 2001d:47032
  • 78. E. Zuazua, Some problems and results on the controllability of partial differential equations, European Congress of Mathematics, Vol. 2 (Budapest, 1996), Progr. Math., vol. 169, Birkhäuser, Basel, 1998, pp. 276-311. MR 99k:93026
  • 79. A. S. Tikhonov, A functional model and duality of spectral components for operators with a continuous spectrum on a curve, Algebra i Analiz 14 (2002), no. 4, 158-195; English transl. in St. Petersburg Math. J. 14 (2003), no. 4. MR 2003j:47012
  • 80. P. Grabowski and F. M. Callier, Admissible observation operators. Semigroup criteria of admissibility, Integral Equations Operator Theory 25 (1996), no. 2, pp. 182-198. MR 97d:93011

Similar Articles

Retrieve articles in St. Petersburg Mathematical Journal with MSC (2000): 47A45

Retrieve articles in all journals with MSC (2000): 47A45


Additional Information

D. V. Yakubovich
Affiliation: St. Petersburg State University, Russia, and Autonomous University of Madrid, Spain
Email: dmitry.yakubovich@nam.es

DOI: https://doi.org/10.1090/S1061-0022-04-00811-8
Keywords: Contraction, dissipative operator, generalized characteristic function, semigroup, functional calculus
Received by editor(s): August 20, 2002
Published electronically: January 30, 2004
Article copyright: © Copyright 2004 American Mathematical Society

American Mathematical Society