Second order periodic differential operators. Threshold properties and homogenization

Authors:
M. Sh. Birman and T. A. Suslina

Translated by:
T. A. Suslina

Original publication:
Algebra i Analiz, tom **15** (2003), nomer 5.

Journal:
St. Petersburg Math. J. **15** (2004), 639-714

MSC (2000):
Primary 35P99, 35Q99

DOI:
https://doi.org/10.1090/S1061-0022-04-00827-1

Published electronically:
August 2, 2004

MathSciNet review:
2068790

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The vector periodic differential operators (DO's) admitting a factorization , where is a first order homogeneous DO, are considered in . Many operators of mathematical physics have this form. The effects that depend only on a rough behavior of the spectral expansion of in a small neighborhood of zero are called *threshold effects* at the point . An example of a threshold effect is the behavior of a DO in the small period limit (the homogenization effect). Another example is related to the negative discrete spectrum of the operator , , where and as . ``Effective characteristics'', such as the homogenized medium, effective mass, effective Hamiltonian, etc., arise in these problems. The general approach to these problems proposed in this paper is based on the spectral perturbation theory for operator-valued functions admitting analytic factorization. Most of the arguments are carried out in abstract terms. As to applications, the main attention is paid to homogenization of DO's.

**[BaPa]**N. S. Bakhvalov and G. P. Panasenko,*Homogenization: averaging processes in periodic media. Mathematical problems in the mechanics of composite materials*, ``Nauka'', Moscow, 1984; English transl., Math. Appl. (Soviet Ser.), vol. 36, Kluwer Acad. Publ. Group, Dordrecht, 1989. MR**0797571 (86m:73049)****[BeLP]**A. Bensoussan, J.-L. Lions, and G. Papanicolaou,*Asymptotic analysis for periodic structures*, Stud. Math. Appl., vol. 5, North-Holland Publishing Co., Amsterdam-New York, 1978. MR**0503330 (82h:35001)****[B1]**M. Sh. Birman,*Discrete spectrum of the periodic Schrödinger operator perturbed by a decaying potential*, Algebra i Analiz**8**(1996), no. 1, 3-20; English transl., St. Petersburg Math. J.**8**(1997), no. 1, 1-14. MR**1392011 (97h:47047)****[B2]**-,*Discrete spectrum in the gaps of a perturbed periodic Schrödinger operator. . Nonregular perturbations*, Algebra i Analiz**9**(1997), no. 6, 62-89; English transl., St. Petersburg Math. J.**9**(1998), no. 6, 1073-1095. MR**1610239 (99h:47054)****[B3]**-,*On homogenization procedure for periodic operators near the edge of an internal gap*, Algebra i Analiz**15**(2003), no. 4, 61-71; English transl., St. Petersburg Math. J.**15**(2004), no. 4, 507-513.**[BLaSu]**M. Sh. Birman, A. Laptev, and T. A. Suslina,*Discrete spectrum of a two-dimensional periodic elliptic second order operator perturbed by a decaying potential. . Semibounded gap*, Algebra i Analiz**12**(2000), no. 4, 36-78; English transl., St. Petersburg Math. J.**12**(2001), no. 4, 535-567. MR**1793617 (2003b:47078)****[BSu1]**M. Sh. Birman and T. A. Suslina,*Two-dimensional periodic Pauli operator. The effective masses at the lower edge of the spectrum*, Mathematical Results in Quantum Mechanics (Prague, 1998), Oper. Theory Adv. Appl., vol. 108, Birkhäuser, Basel, 1999, pp. 13-31. MR**1708785 (2000g:81049)****[BSu2]**-,*Threshold effects near the lower edge of the spectrum for periodic differential operators of mathematical physics*, Systems, Approximation, Singular Integral Operators, and Related Topics (Bordeaux, 2000), Oper. Theory Adv. Appl., vol. 129, Birkhäuser, Basel, 2001, pp. 71-107. MR**1882692 (2003f:35220)****[CV]**C. Conca and M. Vanninathan,*Homogenization of periodic structures via Bloch decomposition*, SIAM J. Appl. Math.**57**(1997), no. 6, 1639-1659. MR**1484944 (98j:35017)****[Ka]**T. Kato,*Perturbation theory for linear operators*, 2nd ed., Grundlehren Math. Wiss., vol. 132, Springer-Verlag, Berlin-New York, 1976. MR**0407617 (53:11389)****[KiSi]**W. Kirsh and B. Simon,*Comparison theorems for the gap of Schrödinger operators*, J. Funct. Anal.**75**(1987), no. 2, 396-410. MR**0916759 (89b:35127)****[Ku]**P. Kuchment,*The mathematics of photonic crystals*, Mathematical Modeling in Optical Science, Frontiers Appl. Math., vol. 22, SIAM, Philadelphia, PA, 2001, pp. 207-272. MR**1831334 (2002k:78002)****[Zh1]**V. V. Zhikov,*Spectral approach to asymptotic diffusion problems*, Differentsial'nye Uravneniya**25**(1989), no. 1, 44-50; English transl., Differential Equations**25**(1989), no. 1, 33-39. MR**0986395 (90a:35107)****[Zh2]**-,*Private communication*, 2002. (Russian)**[ZhKO]**V. V. Zhikov, S. M. Kozlov, and O. A. Oleinik,*Homogenization of differential operators*, ``Nauka'', Moscow, 1993; English transl., Springer-Verlag, Berlin, 1994. MR**1329546 (96h:35003b)****[Sa]**E. Sanchez-Palencia,*Nonhomogeneous media and vibration theory*, Lecture Notes in Phys., vol. 127, Springer-Verlag, Berlin-New York, 1980. MR**0578345 (82j:35010)****[Se]**E. V. Sevost'yanova,*Asymptotic expansion of the solution of a second-order elliptic equation with periodic rapidly oscillating coefficients*, Mat. Sb. (N.S.)**115**(1981), no. 2, 204-222; English transl., Math. USSR-Sb.**43**(1982), no. 2, 181-198. MR**0622145 (83d:35038)****[Su]**T. A. Suslina,*On homogenization of a periodic elliptic operator in a strip*, Algebra i Analiz**16**(2004), no. 1, 269-292; English transl. in St. Petersburg Math. J.**16**(2005), no. 1 (to appear).**[Sh]**R. G. Shterenberg,*Example of a periodic magnetic Schrödinger operator with degenerate lower spectral edge*, Algebra i Analiz (to appear). (Russian)

Retrieve articles in *St. Petersburg Mathematical Journal*
with MSC (2000):
35P99,
35Q99

Retrieve articles in all journals with MSC (2000): 35P99, 35Q99

Additional Information

**M. Sh. Birman**

Affiliation:
Department of Physics, St. Petersburg State University, Ul’yanovskaya 1, Petrodvorets, St. Petersburg 198504, Russia

**T. A. Suslina**

Affiliation:
Department of Physics, St. Petersburg State University, Ul’yanovskaya 1, Petrodvorets, St. Petersburg 198504, Russia

Email:
tanya@petrov.stoic.spb.su

DOI:
https://doi.org/10.1090/S1061-0022-04-00827-1

Keywords:
Periodic operators,
threshold effect,
homogenization

Received by editor(s):
June 25, 2003

Published electronically:
August 2, 2004

Additional Notes:
Supported by RFBR (grant no. 02-01-00798).

Article copyright:
© Copyright 2004
American Mathematical Society