Cyclic Darboux -chains

Author:
S. V. Smirnov

Translated by:
B. M. Bekker

Original publication:
Algebra i Analiz, tom **15** (2003), nomer 5.

Journal:
St. Petersburg Math. J. **15** (2004), 795-811

MSC (2000):
Primary 39A12, 39A13

Published electronically:
August 2, 2004

MathSciNet review:
2068795

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A discrete -analog is constructed for the Veselov-Shabat dressing chain (the latter is a generalization of the classical harmonic oscillator). It is shown that, as in the continuous case, the corresponding operator relations make it possible to completely determine the discrete spectra of the operators in the chain: each spectrum consists of several -arithmetic progressions. Any cyclic -chain can be realized by bounded selfadjoint difference operators, the spectrum of each of them is discrete, and the eigenvectors form a complete family in the Hilbert space of square-integrable sequences. Moreover, an explicit general solution is given for chains of length 2, and it is proved that the -oscillator constructed in the paper weakly converges to the usual harmonic oscillator as .

**[1]**A. B. Shabat and R. I. Yamilov,*Symmetries of nonlinear lattices*, Algebra i Analiz**2**(1990), no. 2, 183–208 (Russian); English transl., Leningrad Math. J.**2**(1991), no. 2, 377–400. MR**1062269****[2]**A. P. Veselov and A. B. Shabat,*A dressing chain and the spectral theory of the Schrödinger operator*, Funktsional. Anal. i Prilozhen.**27**(1993), no. 2, 1–21, 96 (Russian, with Russian summary); English transl., Funct. Anal. Appl.**27**(1993), no. 2, 81–96. MR**1251164**, 10.1007/BF01085979**[3]**V. È. Adler,*Nonlinear chains and Painlevé equations*, Phys. D**73**(1994), no. 4, 335–351. MR**1280883**, 10.1016/0167-2789(94)90104-X**[4]**V. M. Buchstaber and S. P. Novikov (eds.),*Solitons, geometry, and topology: on the crossroad*, American Mathematical Society Translations, Series 2, vol. 179, American Mathematical Society, Providence, RI, 1997. Advances in the Mathematical Sciences, 33. MR**1437154****[5]**S. P. Novikov and A. P. Veselov,*Exactly solvable two-dimensional Schrödinger operators and Laplace transformations*, Solitons, geometry, and topology: on the crossroad, Amer. Math. Soc. Transl. Ser. 2, vol. 179, Amer. Math. Soc., Providence, RI, 1997, pp. 109–132. MR**1437160****[6]**N. M. Atakishiev and S. K. Suslov,*Difference analogues of the harmonic oscillator*, Teoret. Mat. Fiz.**85**(1990), no. 1, 64–73 (Russian, with English summary); English transl., Theoret. and Math. Phys.**85**(1990), no. 1, 1055–1062 (1991). MR**1083952**, 10.1007/BF01017247**[7]**Vyacheslav Spiridonov, Luc Vinet, and Alexei Zhedanov,*Difference Schrödinger operators with linear and exponential discrete spectra*, Lett. Math. Phys.**29**(1993), no. 1, 63–73. MR**1242195**, 10.1007/BF00760860**[8]**Natig M. Atakishiyev, Alejandro Frank, and Kurt Bernardo Wolf,*A simple difference realization of the Heisenberg 𝑞-algebra*, J. Math. Phys.**35**(1994), no. 7, 3253–3260. MR**1279301**, 10.1063/1.530464**[9]**I. A. Dynnikov and S. V. Smirnov,*Exactly solvable cyclic Darboux 𝑞-chains*, Uspekhi Mat. Nauk**57**(2002), no. 6(348), 183–184 (Russian); English transl., Russian Math. Surveys**57**(2002), no. 6, 1218–1219. MR**1991873**, 10.1070/RM2002v057n06ABEH000583**[10]**S. P. Novikov and I. A. Dynnikov,*Discrete spectral symmetries of small-dimensional differential operators and difference operators on regular lattices and two-dimensional manifolds*, Uspekhi Mat. Nauk**52**(1997), no. 5(317), 175–234 (Russian); English transl., Russian Math. Surveys**52**(1997), no. 5, 1057–1116. MR**1490030**, 10.1070/RM1997v052n05ABEH002105

Retrieve articles in *St. Petersburg Mathematical Journal*
with MSC (2000):
39A12,
39A13

Retrieve articles in all journals with MSC (2000): 39A12, 39A13

Additional Information

**S. V. Smirnov**

Affiliation:
Moscow State University, Department of Mathematics and Mechanics, Moscow, 119992, Russia

Email:
sergey@svsmir.mccme.ru

DOI:
https://doi.org/10.1090/S1061-0022-04-00832-5

Keywords:
Harmonic oscillator,
$q$-oscillator,
Darboux $q$-chain

Received by editor(s):
July 31, 2002

Published electronically:
August 2, 2004

Article copyright:
© Copyright 2004
American Mathematical Society