Remote Access St. Petersburg Mathematical Journal

St. Petersburg Mathematical Journal

ISSN 1547-7371(online) ISSN 1061-0022(print)



Solvability of systems of nonhomogeneous convolution equations in convex domains in $\mathbb{C} $

Authors: A. C. Krivosheev and S. N. Gantsev
Translated by: A. Plotkin
Original publication: Algebra i Analiz, tom 15 (2003), nomer 6.
Journal: St. Petersburg Math. J. 15 (2004), 847-865
MSC (2000): Primary 45E10, 46E10
Published electronically: November 16, 2004
MathSciNet review: 2044631
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A criterion for the solvability of systems of nonhomogeneous convolution equations in convex domains on the complex plane is obtained in terms of lower estimates for the characteristic functions of the convolution equations at their noncommon zeros.

References [Enhancements On Off] (What's this?)

  • 1. V. V. Napalkov, Uravneniya svertki v mnogomernykh prostranstvakh, “Nauka”, Moscow, 1982 (Russian). MR 678923
  • 2. B. Ya. Levin, Distribution of zeros of entire functions, Gosudarstv. Izdat. Tehn.-Teor. Lit., Moscow, 1956 (Russian). MR 0087740
    B. Ja. Levin, Distribution of zeros of entire functions, Revised edition, Translations of Mathematical Monographs, vol. 5, American Mathematical Society, Providence, R.I., 1980. Translated from the Russian by R. P. Boas, J. M. Danskin, F. M. Goodspeed, J. Korevaar, A. L. Shields and H. P. Thielman. MR 589888
  • 3. A. S. Krivosheev, A criterion for the solvability of inhomogeneous convolution equations in convex domains of the space 𝐶ⁿ, Izv. Akad. Nauk SSSR Ser. Mat. 54 (1990), no. 3, 480–500 (Russian, with English summary); English transl., Math. USSR-Izv. 36 (1991), no. 3, 497–517. MR 1072692
  • 4. A. S. Krivosheev and V. V. Napalkov, Complex analysis and convolution operators, Uspekhi Mat. Nauk 47 (1992), no. 6(288), 3–58 (Russian); English transl., Russian Math. Surveys 47 (1992), no. 6, 1–56. MR 1209144, 10.1070/RM1992v047n06ABEH000954
  • 5. A. S. Krivosheev, Regularity of the growth of a system of functions and a system of nonhomogeneous convolution equations in convex domains of the complex plane, Izv. Ross. Akad. Nauk Ser. Mat. 64 (2000), no. 5, 69–132 (Russian, with Russian summary); English transl., Izv. Math. 64 (2000), no. 5, 939–1001. MR 1789187, 10.1070/IM2000v064n05ABEH000305
  • 6. Paul Koosis, Introduction to 𝐻_{𝑝} spaces, London Mathematical Society Lecture Note Series, vol. 40, Cambridge University Press, Cambridge-New York, 1980. With an appendix on Wolff’s proof of the corona theorem. MR 565451
  • 7. Jean Dieudonné and Laurent Schwartz, La dualité dans les espaces ℱ et (ℒℱ), Ann. Inst. Fourier Grenoble 1 (1949), 61–101 (1950) (French). MR 0038553
  • 8. J. J. O. O. Wiegerinck, Growth properties of Paley-Wiener functions on 𝐶ⁿ, Nederl. Akad. Wetensch. Indag. Math. 46 (1984), no. 1, 95–112. MR 748983
  • 9. Ragnar Sigurđsson, Convolution equations in domains of 𝐶ⁿ, Ark. Mat. 29 (1991), no. 2, 285–305. MR 1150379, 10.1007/BF02384343
  • 10. A. F. Leont′ev, Tselye funktsii. Ryady eksponent, “Nauka”, Moscow, 1983 (Russian). MR 753827
  • 11. Lars Hörmander, The analysis of linear partial differential operators. I, 2nd ed., Springer Study Edition, Springer-Verlag, Berlin, 1990. Distribution theory and Fourier analysis. MR 1065136

Similar Articles

Retrieve articles in St. Petersburg Mathematical Journal with MSC (2000): 45E10, 46E10

Retrieve articles in all journals with MSC (2000): 45E10, 46E10

Additional Information

Keywords: Spaces of analytic functions, analytic functional, convolution operator, regular growth
Received by editor(s): April 17, 2002
Published electronically: November 16, 2004
Additional Notes: Supported by the RFBR grant no. 02-01-01100 and by a grant of the President of the Russian Federation for young Doctors of Sciences (no. 00-15-99283).
Article copyright: © Copyright 2004 American Mathematical Society