Remote Access St. Petersburg Mathematical Journal

St. Petersburg Mathematical Journal

ISSN 1547-7371(online) ISSN 1061-0022(print)



On the Riemann-Hilbert-Birkhoff inverse monodromy problem and the Painlevé equations

Authors: A. A. Bolibruch, A. R. Its and A. A. Kapaev
Original publication: Algebra i Analiz, tom 16 (2004), nomer 1.
Journal: St. Petersburg Math. J. 16 (2005), 105-142
MSC (2000): Primary 34M55, 34M50, 34M40
Published electronically: December 14, 2004
Correction: St. Petersburg Math. J. 18 (2007), 679-680.
MathSciNet review: 2069003
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A generic $2\times2$ system of first order linear ordinary differential equations with second degree polynomial coefficients is considered. The problem of finding such a system with the property that its Stokes multipliers coincide with a given set of relevant $2\times2$-matrices constitutes the first nontrivial case of the Riemann-Hilbert-Birkhoff inverse monodromy problem. The meromorphic (with respect to the deformation parameter) solvability of this problem is proved. The approach is based on Malgrange's generalization of the classical Birkhoff-Grothendieck theorem to the case with the parameter. As a corollary, a new proof of meromorphicity of the second Painlevé transcendent is obtained. An elementary proof of a particular case of Malgrange's theorem, needed for our goals, is also presented (following an earlier work of the first author).

References [Enhancements On Off] (What's this?)

  • 1. D. V. Anosov and A. A. Bolibrukh, The Riemann-Hilbert problem, Aspects Math., vol. E 22, Friedr. Vieweg, Braunschweig, 1994. MR 1276272 (95d:32024)
  • 2. W. Balser, Meromorphic transformation to Birkhoff standard form in dimension three, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 36 (1989), 233-246. MR 1014998 (90m:34008)
  • 3. -, Formal power series and linear systems of meromorphic ordinary differential equations, Springer-Verlag, New York, 2000. MR 1722871 (2001f:34169)
  • 4. A. A. Bolibrukh, The Riemann-Hilbert problem, Uspekhi Mat. Nauk 45 (1990), no. 2, 3-47; English transl., Russian Math. Surveys 45 (1990), no. 2, 1-58. MR 1069347 (92j:14014)
  • 5. -, The Riemann-Hilbert problem on a complex projective straight line, Mat. Zametki 46 (1989), no. 3, 118-120. (Russian) MR 1032917 (91e:14009)
  • 6. -, On sufficient conditions for the existence of a Fuchsian equation with prescribed monodromy, J. Dynam. Control Systems 5 (1999), 453-472. MR 1722011 (2000j:34117)
  • 7. -, Inverse problem for linear differential equations with meromorphic coefficients, Isomonodromic Deformations and Applications in Physics (Montréal, QC, 2000), CRM Proc. Lecture Notes, vol. 31, Amer. Math. Soc., Providence, RI, 2002, pp. 3-25. MR 1887344 (2003b:34171)
  • 8. R. Beals and D. H. Sattinger, Integrable systems and isomonodromy deformations, Phys. D 65 (1993), 17-47. MR 1221245 (94e:58051)
  • 9. O. Costin, Correlation between pole location and asymptotic behavior for Painlevé I solutions, MSRI Preprint no. 094-97, Math. Sci. Res. Inst., Berkeley, CA, 1997.
  • 10. P. A. Deift, UPenn lecture notes on the Riemann-Hilbert method, 2000.
  • 11. -, Private communication (unpublished).
  • 12. P. A. Deift and X. Zhou, A steepest descent method for oscillatory Riemann-Hilbert problems. Asymptotics for the mkdv equation, Ann. of Math. (2) 137 (1993), 295-368. MR 1207209 (94d:35143)
  • 13. -, Asymptotics for the Painlevé II equation, Comm. Pure Appl. Math. 48 (1995), 277-337. MR 1322812 (96d:34004)
  • 14. H. Flaschka and A. Newell, Monodromy- and spectrum-preserving deformations. I, Comm. Math. Phys. 76 (1980), 65-116. MR 0588248 (82g:35103)
  • 15. A. S. Fokas and A. R. Its, The isomonodromy method and the Painlevé equations, Important Developments in Soliton Theory (A. S. Fokas, V. E. Zakharov, eds.), Springer, Berlin, 1993. MR 1280472 (95j:34012)
  • 16. A. S. Fokas and X. Zhou, On the solvability of Painlevé II and IV, Comm. Math. Phys. 144 (1992), 601-622. MR 1158763 (93d:34004)
  • 17. P. Hartman, Ordinary differential equations, John Wiley and Sons, Inc., New York etc., 1964. MR 0171038 (30:1270)
  • 18. A. R. Its, Connection formulae for the Painlevé transcendents, The Stokes Phenomenon and Hilbert's 16th Problem (Groningen, 1995) (B. L. J. Braaksma, G. K. Immink, and M. van der Put, eds.), World Sci. Publishing, River Edge, NJ, 1996, pp. 139-165. MR 1443691 (98c:34008)
  • 19. A. R. Its and V. Yu. Novokshenov, The isomonodromic deformation method in the theory of Painlevé equations, Lecture Notes in Math., vol. 1191, Springer-Verlag, Berlin-New York, 1986. MR 0851569 (89b:34012)
  • 20. -, Effective sufficient conditions for the solvability of an inverse problem of monodromy theory for systems of linear ordinary differential equations, Funktsional. Anal. i Prilozhen. 22 (1988), no. 3, 25-36; English transl., Funct. Anal. Appl. 22 (1988), no. 3, 190-200. MR 0961759 (90c:58167)
  • 21. A. R. Its, A. S. Fokas, and A. A. Kapaev, On the asymptotic analysis of the Painlevé equations via the isomonodromy method, Nonlinearity 7 (1994), 1291-1325. MR 1294544 (96c:34011)
  • 22. A. V. Kitaev, The justification of the asymptotic formulas obtained by the isomonodromic deformation method, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 179 (1989), 101-109; English transl., J. Soviet. Math. 57 (1991), no. 3, 3131-3135. MR 1039598 (91b:34087)
  • 23. N. Joshi and M. D. Kruskal, An asymptotic approach to the connection problem for the first and the second Painlevé equations, Phys. Lett. A 130 (1988), 129-137; A simple proof that Painlevé equations have no movable essential singularities, Preprint no. CMA-R06-90, Centre for Math. Anal., Australian Nat. Univ., 1990. MR 0948427 (90d:34016)
  • 24. M. Jimbo, T. Miwa, and K. Ueno, Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. I, Phys. D 2 (1981), 306-352. MR 0630674 (83k:34010a)
  • 25. W. B. Jurkat, D. A. Lutz, and A. Peyerimhoff, Birkhoff invariants and effective calculations for meromorphic linear differential equations. I, Math. Anal. Appl. 53 (1976), 438-470; II, Houston J. Math. 2 (1976), 207-238. MR 0399544 (53:3388a); MR 0399545 (53:3388b)
  • 26. V. P. Kostov, Fuchsian linear systems on $CP^{1}$ and the Riemann-Hilbert problem, C. R. Acad. Sci. Paris Ser. I Math. 315 (1992), no. 2, 143-148. MR 1197226 (94a:34007)
  • 27. B. Malgrange, La classification des connexions irrégulières à une variable, Mathematics and Physics (Paris, 1979/1982) (L. Boutet de Monvel, A. Douady, J.-L. Verdier, eds.), Progr. Math., vol. 37, Birkhäuser, Boston, MA, 1983, pp. 381-399; Sur les déformations isomonodromiques. I. Singularités régulières, ibid., pp. 401-426; Sur les déformations isomonodromiques. II. Singularités irrégulières, ibid., pp. 427-438. MR 0728430 (85m:58006); MR 0728431 (85m:58094a); MR 0728432 (85m:58094b)
  • 28. L. J. Mason, M. A. Singer, and N. M. J. Woodhouse, Tau functions and the twistor theory of integrable systems, Preprint, Univ. of Oxford, 1999.
  • 29. T. Miwa, Painlevé property of monodromy preserving deformation equations and the analyticity of $\tau$-functions, Publ. Res. Inst. Math. Sci. 17 (1981), 703-712. MR 0642657 (84k:34014)
  • 30. J. Palmer, Zeros of the Jimbo, Miwa, Ueno tau function, J. Math. Phys. 40 (1999), 6638-6681. MR 1725878 (2001g:34136)
  • 31. Y. Sibuya, Linear differential equations in the complex domain<>: Problems of analytic continuation, Transl. Math. Monogr., vol. 82, Amer. Math. Soc., Providence, RI, 1990. MR 1084379 (92a:34010)
  • 32. V. S. Varadarajan, Linear meromorphic differential equations<>: A modern point of view, Bull. Amer. Math. Soc. 33 (1996), 1-42. MR 1339809 (96h:34011)
  • 33. W. Wasow, Asymptotic expansions for ordinary differential equations, Robert E. Krieger Publishing Co., Huntington, NY, 1976. MR 0460820 (57:812)
  • 34. X. Zhou, The Riemann-Hilbert problem and inverse scattering, SIAM J. Math. Anal. 20 (1989), 966-986. MR 1000732 (90i:34046)
  • 35. A. A. Kapaev, Lax pairs for Painlevé equations, Isomonodromic Deformations and Applications in Physics (Montréal, QC, 2000), CRM Proc. Lecture Notes, vol. 31, Amer. Math. Soc., Providence, RI, 2002, pp. 37-48. MR 1887346 (2003m:34216)

Similar Articles

Retrieve articles in St. Petersburg Mathematical Journal with MSC (2000): 34M55, 34M50, 34M40

Retrieve articles in all journals with MSC (2000): 34M55, 34M50, 34M40

Additional Information

A. A. Bolibruch
Affiliation: Steklov Mathematical Institute, Russian Academy of Sciences, Gubkina 8, Moscow 117966, GSP-1, Russia

A. R. Its
Affiliation: Department of Mathematical Sciences, Indiana University–Purdue University Indianapolis, Indianapolis, IN 46202-3216, USA

A. A. Kapaev
Affiliation: St. Petersburg Branch, Steklov Mathematical Institute, Russian Academy of Sciences, Fontanka 27, St. Petersburg 191023, Russia

Keywords: Riemann--Hilbert problem, Painlev\'e equations
Received by editor(s): October 6, 2003
Published electronically: December 14, 2004
Additional Notes: The first author was supported in part by RFBR (grant no. 99-01-00157) and by INTAS (grant no. 97-1644). The second author was supported in part by NSF (grants nos. DMS-9801608 and DMS-0099812). The third author was supported in part by RFBR (grant no. 99-01-00687). The second author also thanks the Département de Mathématiques, Université de Strasbourg, where part of this work was done, for hospitality during his visit.
Dedicated: This paper is dedicated to Professor M. Sh. Birman on the occasion of his 75th birthday
Article copyright: © Copyright 2004 American Mathematical Society

American Mathematical Society