Remote Access St. Petersburg Mathematical Journal

St. Petersburg Mathematical Journal

ISSN 1547-7371(online) ISSN 1061-0022(print)

 
 

 

Nonlinear $N$-term approximation by refinable functions


Author: Yu. Brudnyi
Translated by: the author
Original publication: Algebra i Analiz, tom 16 (2004), nomer 1.
Journal: St. Petersburg Math. J. 16 (2005), 143-179
MSC (2000): Primary 41A63, 41A30
DOI: https://doi.org/10.1090/S1061-0022-04-00846-5
Published electronically: December 14, 2004
MathSciNet review: 2068353
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Several almost optimal results are obtained about $N$-term nonlinear approximation by dilated integer translates of a refinable function associated with a finite mask and a rather general matrix dilation $A\in GL_n({\mathbb{Z} })$.


References [Enhancements On Off] (What's this?)

  • [Ba] C. Bandt, Self-similar sets. 5. Integer matrices and fractal tilings of $\Bbb R^n$, Proc. Amer. Math. Soc. 112 (1991), 549-562. MR 1036982 (92d:58093)
  • [Br1] Yu. Brudnyi, Rational approximation and imbedding theorems, Dokl. Akad. Nauk SSSR 247 (1979), no. 2, 269-272; English transl., Soviet Math. Dokl. 20 (1979), no. 4, 681-684. MR 0545347 (81d:41016)
  • [Br2] -, Adaptive approximation of functions with singularities, Trudy Moskov. Mat. Obshch. 55 (1994), 149-242; English transl., Trans. Moscow Math. Soc. 1994, 123-186 (1995). MR 1468457 (98f:41004)
  • [Br3] -, Nonlinear piecewise polynomial approximation of functions from Besov spaces, Math. Balkanica (N.S.) 16 (2002), no. 1-4, 339-358. MR 1934002 (2003j:41004)
  • [BI] Yu. Brudnyi and I. Irodova, Nonlinear spline approximation of functions of several variables and $B$-spaces, Algebra i Analiz 4 (1992), no. 4, 45-79; English transl., St. Petersburg Math. J. 4 (1993), no. 4, 667-694. MR 1190782 (93i:41023)
  • [BK] Yu. Brudnyi and I. Kozlova, An algorithm of nonlinear approximation by piecewise polynomials, Mat. Fiz. Anal. Geom. 9 (2002), no. 3, 311-325. MR 1949788 (2004c:42061)
  • [BK1] Yu. Brudnyi and N. Kruglyak, A family of approximation spaces, Studies in the Theory of Functions of Several Real Variables, No. 2, Yaroslav. Gos. Univ., Yaroslavl', 1978, pp. 15-42. (Russian) MR 0559913 (81m:46101)
  • [BK2] -, Interpolation functors and interpolation spaces. Vol. 1, North-Holland Math. Library, vol. 47, North-Holland, Amsterdam, 1991. MR 1107298 (93b:46141)
  • [BKo] Yu. Brudnyi and B. Kotlyar, A certain problem of combinatorial geometry, Sibirsk. Mat. Zh. 11 (1970), no. 5, 1171-1173; English transl., Siberian Math. J. 11 (1970), 870-871. MR 0270270 (42:5160)
  • [BL] J. Bergh and J. Löfström, Interpolation spaces. An introduction, Grundlehren Math. Wiss., vol. 223, Springer-Verlag, Berlin-New York, 1976. MR 0482275 (58:2349)
  • [BS1] M. Birman and M. Solomyak, Piecewise polynomial approximations of functions of classes $W^\alpha_p$, Mat. Sb. (N. S.) 73 (1967), no. 3, 331-355; English transl., Math. USSR-Sb. 2 (1967), 295-317. MR 0217487 (36:576)
  • [BS2] -, Estimates for the singular numbers of integral operators, Uspekhi Mat. Nauk 32 (1977), no. 1, 17-84; English transl., Russian Math. Surveys 32 (1977), no. 1, 15-89. MR 0438186 (55:11104)
  • [BS3] -, Quantitative analysis in Sobolev imbedding theorems and applications to spectral theory, Tenth Mathematical School (Summer School, Kaciveli/Nalchik, 1972), Inst. Mat. Akad. Nauk Ukrain. SSR, Kiev, 1974, pp. 5-189. (Russian) MR 0482138 (58:2224)
  • [CDM] A. S. Cavaretta, W. Dahmen, and C. A. Miccelli, Stationary subdivisions, Mem. Amer. Math. Soc. 93 (1991), no. 453, 186 pp. MR 1079033 (92h:65017)
  • [CGV] A. Cohen, K. Gröchenig, and L. F. Villemoes, Regularity of multivariate refinable functions, Constr. Approx. 15 (1999), 241-255. MR 1668921 (2000b:42028)
  • [D] R. A. DeVore, Nonlinear approximation, Acta Numer., vol. 7, Cambridge Univ. Press, Cambridge, 1998, pp. 51-150. MR 1689432 (2001a:41034)
  • [DJP] R. A. DeVore, B. Jawerth, and V. Popov, Compression of wavelet decompositions, Amer. J. Math. 114 (1992), 737-785. MR 1175690 (94a:42045)
  • [DPY] R. A. DeVore, P. Petrushev, and X. M. Yu, Nonlinear wavelet approximation in the space $C(\Bbb R^d)$, Progress in Approximation Theory (Tampa, FL, 1990), Springer Ser. Comput. Math., vol 19, Springer, New York, 1992, pp. 261-283. MR 1240786 (94h:41070)
  • [H] J. E. Hutchinson, Fractals and self-similarity, Indiana Univ. Math. J. 30 (1981), 713-747. MR 0625600 (82h:49026)
  • [HLR] X.-G. He, K.-S. Lau, and H. Rao, Self-affine sets and graph-directed systems, Constr. Approx. 19 (2003), 373-397; Preprint, City Univ. of Hong-Kong, 2002, 27pp.
  • [J] R. Q. Jia, Approximation properties of multivariate wavelets, Preprint, Univ. of Alberta, Edmonton, 1996.
  • [JM] R. Q. Jia and C. A. Micchelli, On linear independence for integer translates of a finite number of functions, Proc. Edinburgh Math. Soc. (2) 36 (1993), 69-85. MR 1200188 (94e:41044)
  • [L-R] P. G. Lemarié-Rieusset, Projecteurs invariants, matrices de dilatation, ondelettes et analyses multi-résolutions, Rev. Mat. Iberoamericana 10 (1994), no. 2, 283-347. MR 1286477 (95e:42039)
  • [LW] J. C. Lagarias and Y. Wang, Self-affine tiles in $\Bbb R^n$, Adv. Math. 121 (1996), 21-49. MR 1399601 (97d:52034)
  • [PP] P. Petrushev and V. Popov, Rational approximation of real functions, Encyclopedia Math. Appl., vol. 28, Cambridge Univ. Press, Cambridge, 1987. MR 0940242 (89i:41022)
  • [R] K. H. Rosen (ed.), Handbook of discrete and combinatorial mathematics, CRC Press, Boca Raton, FL, 2000. MR 1725200 (2000g:05001)
  • [S] E. Schmidt, Zur Theorie der linearen und nonlinearen Integralgleichungen. I, Math. Ann. 63 (1907), 433-476.
  • [T] V. N. Temlyakov, Nonlinear methods of approximation, IMI-Preprint Ser., Univ. of South Caroline, 2001, 1-57.
  • [W] P. Wojtaszczyk, A mathematical introduction to wavelets, London Math. Soc. Student Text, vol. 37, Cambridge Univ. Press, Cambridge, 1997. MR 1436437 (98j:42025)
  • [Z] D. -X. Zhou, Self-similar lattice tilings and subdivision schemes, SIAM J. Math. Anal. 33 (2001), no. 1, 1-15 (electronic). MR 1857987 (2002g:41031)

Similar Articles

Retrieve articles in St. Petersburg Mathematical Journal with MSC (2000): 41A63, 41A30

Retrieve articles in all journals with MSC (2000): 41A63, 41A30


Additional Information

Yu. Brudnyi
Affiliation: Department of Mathematics, Technion—Israel Institute of Technology, 32000 Haifa, Israel
Email: ybrudnyi@tx.technion.ac.il

DOI: https://doi.org/10.1090/S1061-0022-04-00846-5
Keywords: Self-affine region, digraph, colored graph, refinable function, expanding matrix, mask
Received by editor(s): May 15, 2003
Published electronically: December 14, 2004
Additional Notes: Supported by the Fund for the Promotion of Research at the Technion.
Dedicated: Dedicated to my friend Misha Birman with love and gratitude
Article copyright: © Copyright 2004 American Mathematical Society

American Mathematical Society