Remote Access St. Petersburg Mathematical Journal

St. Petersburg Mathematical Journal

ISSN 1547-7371(online) ISSN 1061-0022(print)



Spectral shift function in strong magnetic fields

Authors: V. Bruneau, A. Pushnitski and G. Raikov
Original publication: Algebra i Analiz, tom 16 (2004), nomer 1.
Journal: St. Petersburg Math. J. 16 (2005), 181-209
MSC (2000): Primary 35J10
Published electronically: December 17, 2004
MathSciNet review: 2069004
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The three-dimensional Schrödinger operator $H$ with constant magnetic field of strength $b>0$ is considered under the assumption that the electric potential $V \in L^1({{\mathbb R}^3})$ admits certain power-like estimates at infinity. The asymptotic behavior as $b \rightarrow \infty$ of the spectral shift function $\xi(E;H,H_0)$ is studied for the pair of operators $(H,H_0)$ at the energies $E = {\mathcal{E}} b + \lambda$, ${\mathcal{E}}>0$ and $\lambda \in{\mathbb R}$ being fixed. Two asymptotic regimes are distinguished. In the first regime, called asymptotics far from the Landau levels, we pick ${\mathcal{E}}/2 \not \in {\mathbb Z}_+$ and $\lambda \in {\mathbb R}$; then the main term is always of order $\sqrt{b}$, and is independent of $\lambda$. In the second asymptotic regime, called asymptotics near a Landau level, we choose ${\mathcal{E}}= 2 q_0$, $q_0 \in {\mathbb Z}_+$, and $\lambda \neq 0$; in this case the leading term of the SSF could be of order $b$ or $\sqrt{b}$ for different $\lambda$.

References [Enhancements On Off] (What's this?)

  • 1. M. Abramowitz and I. Stegun (eds.), Handbook of mathematical functions with formulas, graphs, and mathematical tables, Nat. Bureau of Standards Appl. Math. Ser., vol. 55, U. S. Government Printing Office, Washington, DC, 1964. MR 0167642 (29:4914)
  • 2. S. Agmon, Spectral properties of Schrödinger operators and scattering theory, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 2 (1975), no. 2, 151-218. MR 0397194 (53:1053)
  • 3. J. Avron, I. Herbst, and B. Simon, Schrödinger operators with magnetic fields. <>. General interactions, Duke Math. J. 45 (1978), 847-883. MR 0518109 (80k:35054)
  • 4. J. Avron, R. Seiler, and B. Simon, The index of a pair of projections, J. Funct. Anal. 120 (1994), no. 1, 220-237. MR 1262254 (95b:47012)
  • 5. A. Balazard-Konlein, Calcul fonctionnel pour des opérateurs $h$-admissibles à symbole opérateur et applications, Thèse de Docteur de 3ème cycle, Univ. de Nantes, 1985.
  • 6. F. A. Berezin and M. A. Shubin, The Schrödinger equation, Moskov. Gos. Univ., Moscow, 1983; English transl., Math. Appl. (Soviet Ser.), vol. 66, Kluwer Acad. Publishers Group, Dordrecht, 1991. MR 1186643 (93i:81001)
  • 7. M. Sh. Birman, On the spectrum of singular boundary value problems, Mat. Sb. 55 (1961), no. 2, 125-174; English transl., Amer. Math. Soc. Transl. (2), vol. 53, Amer. Math. Soc., Providence, RI, 1966, pp. 23-80. MR 0142896 (26:463)
  • 8. M. Sh. Birman and S. B. Entina, Stationary approach in abstract scattering theory, Izv. Akad. Nauk SSSR Ser. Mat. 31 (1967), no. 2, 401-430; English transl., Math. USSR-Izv. 1 (1967), no. 1, 391-420. MR 0209895 (35:790
  • 9. M. Sh. Birman and M. G. Krein, On the theory of wave operators and scattering operators, Dokl. Akad. Nauk SSSR 144 (1962), no. 3, 475-478; English transl., Soviet Math. Dokl. 3 (1962), 740-744. MR 0139007 (25:2447)
  • 10. M. Sh. Birman and D. R. Yafaev, The spectral shift function. The work of M. G. Krein and its further development, Algebra i Analiz 4 (1992), no. 5, 1-44; English transl., St. Petersburg Math. J. 4 (1993), no. 5, 833-870. MR 1202723 (94g:47002)
  • 11. V. S. Buslaev and L. D. Faddeev, Formulas for traces for a singular Sturm-Liouville differential operator, Dokl. Akad. Nauk SSSR 132 (1960), no. 1, 13-16; English transl., Soviet Math. Dokl. 1 (1960), 451-454. MR 0120417 (22:11171)
  • 12. M. Dimassi and J. Sjöstrand, Spectral asymptotics in the semi-classical limit, London Math. Soc. Lecture Note Ser., vol. 268, Cambridge Univ. Press, Cambridge, 1999. MR 1735654 (2001b:35237)
  • 13. V. Fock, Bemerkung zur Quantelung des harmonischen Oszillators im Magnetfeld, Z. Physik 47 (1928), 446-448.
  • 14. C. Gérard and I. \Laba, Multiparticle quantum scattering in constant magnetic fields, Math. Surveys Monographs, vol. 90, Amer. Math. Soc., Providence, RI, 2002. MR 1871447 (2003d:81316)
  • 15. F. Gesztesy and K. Makarov, The $\Xi$operator and its relation to Krein's spectral shift function, J. Anal. Math. 81 (2000), 139-183. MR 1785280 (2001i:47016)
  • 16. I. S. Gradshtein and I. M. Ryzhik, Tables of integrals, sums, series, and products, Fizmatgiz, Moscow, 1963; English transl., Acad. Press, New York-London, 1965. MR 0161996 (28:5198); MR 0197789 (33:5952)
  • 17. T. Hupfer, H. Leschke, and S. Warzel, Upper bounds on the density of states of single Landau levels broadened by Gaussian random potentials, J. Math. Phys. 42 (2001), 5626-5641. MR 1866676 (2003b:82033)
  • 18. V. Ivrii, Microlocal analysis and precise spectral asymptotics, Springer Monographs in Math., Springer-Verlag, Berlin, 1998. MR 1631419 (99e:58193)
  • 19. M. G. Krein, On the trace formula in perturbation theory, Mat. Sb. 33 (75) (1953), no. 3, 597-626. (Russian) MR 0060742 (15:720b)
  • 20. L. Landau, Diamagnetismus der Metalle, Z. Physik 64 (1930), 629-637.
  • 21. A. B. Pushnitskii, Representation of the spectral shift function for perturbations of fixed sign, Algebra i Analiz 9 (1997), no. 6, 197-213; English transl., St. Petersburg Math. J. 9 (1998), no. 6, 1181-1194. MR 1722328 (2000j:47086)
  • 22. -, Estimates for the spectral shift function of the polyharmonic operator, J. Math. Phys. 40 (1999), 5578-5592. MR 1722328 (2000j:47086)
  • 23. -, The spectral shift function and the invariance principle, J. Funct. Anal. 183 (2001), 269-320. MR 1844210 (2002j:47019)
  • 24. G. D. Raikov, Eigenvalue asymptotics for the Schrödinger operator with homogeneous magnetic potential and decreasing electric potential. <>. Behaviour near the essential spectrum tips, Comm. Partial Differential Equations 15 (1990), 407-434; Errata: Comm. Partial Differential Equations 18 (1993), 1977-1979. MR 1044429 (91k:35188)
  • 25. -, Eigenvalue asymptotics for the Schrödinger operator in strong constant magnetic fields, Comm. Partial Differential Equations 23 (1998), no. 9-10, 1583-1619. MR 1641780 (99i:35120)
  • 26. -, Asymptotic properties of the magnetic integrated density of states, Electron. J. Differential Equations 1999, No. 13, 27 pp. MR 1679559 (2000h:35126)
  • 27. G. D. Raikov and M. Dimassi, Spectral asymptotics for quantum Hamiltonians in strong magnetic fields, Cubo Mat. Educ. 3 (2001), 317-391. MR 1961594 (2004a:81092)
  • 28. G. D. Raikov and S. Warzel, Quasi-classical versus non-classical spectral asymptotics for magnetic Schrödinger operators with decreasing electric potentials, Rev. Math. Phys. 14 (2002), 1051-1072. MR 1939760 (2003m:81069)
  • 29. M. Reed and B. Simon, Methods of modern mathematical physics. <>. Analysis of operators, Acad. Press, New York-London, 1978. MR 0493421 (58:12429c)
  • 30. A. V. Sobolev, Efficient bounds for the spectral shift function, Ann. Inst. H. Poincaré Phys. Théor. 58 (1993), no. 1, 55-83. MR 1208792 (94c:47018)
  • 31. D. R. Yafaev, Mathematical scattering theory. General theory, Transl. Math. Monogr., vol. 105, Amer. Math. Soc., Providence, RI, 1992. MR 1180965 (94f:47012)

Similar Articles

Retrieve articles in St. Petersburg Mathematical Journal with MSC (2000): 35J10

Retrieve articles in all journals with MSC (2000): 35J10

Additional Information

V. Bruneau
Affiliation: Mathématiques Appliquées de Bordeaux, Université Bordeaux I, 351 Cours de la Libération, 33405 Talence, France

A. Pushnitski
Affiliation: Department of Mathematical Sciences, Loughborough University, Loughborough, Leicestershire, LE11 3TU, United Kingdom

G. Raikov
Affiliation: Departamento de Matemáticas, Universidad de Chile, Las Palmeras 3425, Casilla 653, Santiago, Chile

Keywords: Schr\"odinger operator, spectral shift function, asymptotics
Received by editor(s): October 27, 2003
Published electronically: December 17, 2004
Additional Notes: V. Bruneau and G. Raikov were supported by the Chilean Science Foundation Fondecyt (grants nos. 1020737 and 7020737). A. Pushnitski was supported by the EPSRC (grant no. GR/R53210/01).
Dedicated: Dedicated to Professor Mikhail Birman on the occasion of his 75th birthday
Article copyright: © Copyright 2004 American Mathematical Society

American Mathematical Society