St. Petersburg Mathematical Journal

ISSN 1547-7371(online) ISSN 1061-0022(print)



Harmonic diffeomorphisms of manifolds

Authors: S. E. Stepanov and I. G. Shandra
Translated by: N. Yu. Netsvetaev
Original publication: Algebra i Analiz, tom 16 (2004), nomer 2.
Journal: St. Petersburg Math. J. 16 (2005), 401-412
MSC (2000): Primary 53C43, 58E20
Published electronically: March 9, 2005
MathSciNet review: 2068345
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In spite of the abundance of publications on harmonic mappings of manifolds, at present there exists neither a theory of harmonic diffeomorphisms, nor a definition of infinitesimal harmonic transformation of a Riemannian manifold, to say nothing of the theory of groups of such transformations. In the paper, this gap is partially filled, and a new subject of investigations is announced.

References [Enhancements On Off] (What's this?)

  • 1. J. Eells and L. Lemaire, A report on harmonic maps, Bull. London Math. Soc. 10 (1978), no. 1, 1–68. MR 495450, 10.1112/blms/10.1.1
  • 2. J. Eells and L. Lemaire, Another report on harmonic maps, Bull. London Math. Soc. 20 (1988), no. 5, 385–524. MR 956352, 10.1112/blms/20.5.385
  • 3. Ĭ. Davidov and A. G. Sergeev, Twistor spaces and harmonic maps, Uspekhi Mat. Nauk 48 (1993), no. 3(291), 3–96 (Russian); English transl., Russian Math. Surveys 48 (1993), no. 3, 1–91. MR 1243612, 10.1070/RM1993v048n03ABEH001031
  • 4. Luther Pfahler Eisenhart, Riemannian Geometry, Princeton University Press, Princeton, N. J., 1949. 2d printing. MR 0035081
  • 5. Kentaro Yano, Differential geometry on complex and almost complex spaces, International Series of Monographs in Pure and Applied Mathematics, Vol. 49, A Pergamon Press Book. The Macmillan Co., New York, 1965. MR 0187181
  • 6. N. S. Sinjukov, Geodezicheskie otobrazheniya rimanovykh prostranstv, “Nauka”, Moscow, 1979 (Russian). MR 552022
  • 7. Kentaro Yano, The theory of Lie derivatives and its applications, North-Holland Publishing Co., Amsterdam; P. Noordhoff Ltd., Groningen; Interscience Publishers Inc., New York, 1957. MR 0088769
  • 8. Shoshichi Kobayashi, Transformation groups in differential geometry, Springer-Verlag, New York-Heidelberg, 1972. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 70. MR 0355886
  • 9. H. Wu, The Bochner technique in differential geometry, Harvard Acad. Publ., London, 1987.
  • 10. S. E. Stepanov, The classification of harmonic diffeomorphisms, The 5-th International Conference on Geometry and Applications (August 24-29, 2001, Varna): Abstracts, Union of Bulgarian Mathematicians, Sofia, 2001, p. 55.
  • 11. J. Milnor, Morse theory, Based on lecture notes by M. Spivak and R. Wells. Annals of Mathematics Studies, No. 51, Princeton University Press, Princeton, N.J., 1963. MR 0163331
  • 12. Sergey E. Stepanov, On the global theory of some classes of mappings, Ann. Global Anal. Geom. 13 (1995), no. 3, 239–249. MR 1344481, 10.1007/BF00773658
  • 13. Raghavan Narasimhan, Analysis on real and complex manifolds, Advanced Studies in Pure Mathematics, Vol. 1, Masson & Cie, Éditeurs, Paris; North-Holland Publishing Co., Amsterdam, 1968. MR 0251745
  • 14. Shoshichi Kobayashi and Katsumi Nomizu, Foundations of differential geometry. Vol. II, Interscience Tracts in Pure and Applied Mathematics, No. 15 Vol. II, Interscience Publishers John Wiley & Sons, Inc., New York-London-Sydney, 1969. MR 0238225
  • 15. Alfred Gray and Luis M. Hervella, The sixteen classes of almost Hermitian manifolds and their linear invariants, Ann. Mat. Pura Appl. (4) 123 (1980), 35–58. MR 581924, 10.1007/BF01796539
  • 16. Lew Friedland and Chuan-Chih Hsiung, A certain class of almost Hermitian manifolds, Tensor (N.S.) 48 (1989), no. 3, 252–263. MR 1088471
  • 17. Alfred Gray, Nearly Kähler manifolds, J. Differential Geometry 4 (1970), 283–309. MR 0267502
  • 18. S. E. Stepanov, A group-theoretic approach to the study of Einstein and Maxwell equations, Teoret. Mat. Fiz. 111 (1997), no. 1, 32–43 (Russian, with English and Russian summaries); English transl., Theoret. and Math. Phys. 111 (1997), no. 1, 419–427. MR 1473424, 10.1007/BF02634197
  • 19. Arthur L. Besse, Einstein manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 10, Springer-Verlag, Berlin, 1987. MR 867684
  • 20. D. Kramer, H. Stephani, E. Herlt, and M. MacCallum, Exact solutions of Einstein’s field equations, Cambridge University Press, Cambridge-New York, 1980. Edited by Ernst Schmutzer; Cambridge Monographs on Mathematical Physics. MR 614593
  • 21. Albert Nijenhuis, A note on first integrals of geodesics, Nederl. Akad. Wetensch. Proc. Ser. A 70=Indag. Math. 29 (1967), 141–145. MR 0212697
  • 22. S. E. Stepanov, On an application of a theorem of P. A. Shirokov in the Bochner technique, Izv. Vyssh. Uchebn. Zaved. Mat. 9 (1996), 53–59 (Russian); English transl., Russian Math. (Iz. VUZ) 40 (1996), no. 9, 50–55 (1997). MR 1430472
  • 23. Shoshichi Kobayashi and Katsumi Nomizu, Foundations of differential geometry. Vol I, Interscience Publishers, a division of John Wiley & Sons, New York-London, 1963. MR 0152974
  • 24. K. Yano and S. Bochner, Curvature and Betti numbers, Annals of Mathematics Studies, No. 32, Princeton University Press, Princeton, N. J., 1953. MR 0062505

Similar Articles

Retrieve articles in St. Petersburg Mathematical Journal with MSC (2000): 53C43, 58E20

Retrieve articles in all journals with MSC (2000): 53C43, 58E20

Additional Information

S. E. Stepanov
Affiliation: Vladimir State Pedagogical University, Pr. Stroitelei 11, Vladimir 600024, Russia

I. G. Shandra
Affiliation: Financial Academy, Government of the Russian Federation, Leningradskii Pr. 51, Moscow 125468, Russia

Keywords: Riemannian manifold, harmonic diffeomorphism, infinitesimal harmonic transformation
Received by editor(s): September 18, 2001
Published electronically: March 9, 2005
Article copyright: © Copyright 2005 American Mathematical Society