Remote Access St. Petersburg Mathematical Journal

St. Petersburg Mathematical Journal

ISSN 1547-7371(online) ISSN 1061-0022(print)

 
 

 

A local two-radii theorem on the sphere


Author: Vit. V. Volchkov
Translated by: B. M. Bekker
Original publication: Algebra i Analiz, tom 16 (2004), nomer 3.
Journal: St. Petersburg Math. J. 16 (2005), 453-475
MSC (2000): Primary 26B15, 44A15, 49Q15
DOI: https://doi.org/10.1090/S1061-0022-05-00861-7
Published electronically: May 2, 2005
MathSciNet review: 2083565
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Various classes of functions with vanishing integrals over all balls of a fixed radius on the sphere ${\mathbb S}^n$ are studied. For such functions, uniqueness theorems are proved, and representations in the form of series in special functions are obtained. These results made it possible to completely resolve the problem concerning the existence of a nonzero function with vanishing integrals over all balls on ${\mathbb S}^n$ the radii of which belong to a given two-element set.


References [Enhancements On Off] (What's this?)

  • 1. S. Helgason, Groups and geometric analysis. Integral geometry, invariant differential operators, and spherical functions, Pure Appl. Math., vol. 113, Acad. Press, Inc., Orlando, FL, 1984. MR 0754767 (86c:22017)
  • 2. C. A. Berenstein and D. Struppa, Complex analysis and convolution equations, Complex Analysis. Several Variables. 5, Itogi Nauki i Tekhniki Ser. Sovrem. Probl. Mat. Fund. Naprav., vol. 54, VINITI, Moscow, 1989, pp. 5-111; English transl., Several Complex Variables. V, Encyclopaedia Math. Sci., vol. 54, Springer-Verlag, Berlin, 1993, pp. 1-108. MR 1039621 (91d:32001)
  • 3. L. Zalcman, A bibliographic survey of the Pompeiu problem, Approximation by Solutions of Partial Differential Equations (Hanstholm, 1991) (B. Fuglede et al., eds.), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 365, Kluwer Acad. Publ., Dordrecht, 1992, pp. 185-194. MR 1168719 (93e:26001)
  • 4. I. Netuka and J. Vesely, Mean value property and harmonic functions, Classical and Modern Potential Theory and Applications (Chateau de Bonas, 1993), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 430, Kluwer Acad. Publ., Dordrecht, 1994, pp. 359-398. MR 1321628 (96c:31001)
  • 5. L. Zalcman, Supplementary bibliography to ``A bibliographic survey of the Pompeiu problem'', Radon Transforms and Tomography (South Hadley, MA, 2000), Contemp. Math., vol. 278, Amer. Math. Soc., Providence, RI, 2001, pp. 69-74. MR 1851479
  • 6. L. Chakalov, Sur un problème de D. Pompeiu, Annuaire Univ. Sofia Fac. Phys.-Math. 40 (1944), 1-14. MR 0031980 (11:236e)
  • 7. C. A. Berenstein and L. Zalcman, Pompeiu's problem on symmetric spaces, Comment. Math. Helv. 55 (1980), 593-621. MR 0604716 (83d:43012)
  • 8. S. A. Williams, Analyticity of the boundary for Lipschitz domains without the Pompeiu property, Indiana Univ. Math. J. 30 (1981), 357-369. MR 0611225 (82j:31009)
  • 9. C. A. Berenstein and M. Shahshahani, Harmonic analysis and Pompeiu problem, Amer. J. Math. 105 (1983), 1217-1229. MR 0714774 (85d:32061)
  • 10. P. Ungar, Freak theorem about functions on a sphere, J. London Math. Soc. 29 (1954), 100-103. MR 0057963 (15:299b)
  • 11. D. H. Armitage, The Pompeiu property for spherical polygons, Proc. Roy. Irish Acad. Sect. A 96 (1996), 25-32. MR 1644624 (99f:31009)
  • 12. C. A. Berenstein and R. Gay, A local version of the two-circles theorem, Israel J. Math. 55 (1986), 267-288. MR 0876395 (88f:42044)
  • 13. M. El Harchaoui, Inversion de la transformation de Pompeiu locale dans les espaces hyperboliques réel et complexe: cas des deux boules, J. Anal. Math. 67 (1995), 1-37. MR 1383489 (97e:43006)
  • 14. V. V. Volchkov, Spherical means theorems on symmetric spaces, Mat. Sb. 192 (2001), no. 9, 17-38; English transl., Sb. Math. 192 (2001), no. 9, 1275-1296. MR 1867008 (2003m:43009)
  • 15. -, A local two-radius theorem on symmetric spaces, Dokl. Akad. Nauk 381 (2001), no. 6, 727-731. (Russian) MR 1892518 (2003b:43007)
  • 16. Vit. V. Volchkov, On functions with zero spherical means on a quaternion hyperbolic space, Izv. Ross. Akad. Nauk Ser. Mat. 66 (2002), no. 5, 3-32; English transl., Izv. Math. 66 (2002), no. 5, 875-903. MR 1965935 (2004e:43014)
  • 17. B. Ya. Levin, Distribution of zeros of entire functions, Gostekhizdat, Moscow, 1956; English transl., Transl. Math. Monogr., vol. 5, Amer. Math. Soc., Providence, RI, 1980. MR 0087740 (19:402c) MR 0589888 (81k:30011)
  • 18. R. Schneider, Functions on a sphere with vanishing integrals over certain subspheres, J. Math. Anal. Appl. 26 (1969), 381-384. MR 0237723 (38:6004)
  • 19. E. M. Stein and G. Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Math. Ser., No. 32, Princeton Univ. Press, Princeton, NJ, 1971. MR 0304972 (46:4102)
  • 20. N. Ya. Vilenkin, Special functions and the theory of group representations, 2nd ed., ``Nauka'', Moscow, 1991; English transl. of 1st ed., Transl. Math. Monogr., vol. 22, Amer. Math. Soc., Providence, RI, 1968. MR 1177172 (93d:33013) MR 0229863 (37:5429)
  • 21. V. V. Volchkov, New mean-value theorems for solutions of the Helmholtz equation, Mat. Sb. 184 (1993), no. 7, 71-78; English transl., Russian Acad. Sci. Sb. Math. 79 (1994), no. 2, 281-286. MR 1235290 (94h:35043)
  • 22. A. Erdélyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, Higher transcendental functions. Vol. I, McGraw-Hill Book Co., Inc., New York etc., 1953. MR 0058756 (15:419i)
  • 23. È. Ya. Riekstyn'sh, Asymptotic expansion of integrals. Vol. 1, ``Zinatne'', Riga, 1974. (Russian) MR 0374775 (51:10971)
  • 24. A. Erdelyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, Higher transcendental functions. Vol. II, McGraw-Hill Book Co., Inc., New York etc., 1953. MR 0058756 (15:419i)
  • 25. F. John, Plane waves and spherical means applied to partial differential equations, Interscience Publ., New York-London, 1955. MR 0075429 (17:746d)
  • 26. V. V. Volchkov, Uniqueness theorem for multiple lacunary trigonometric series, Mat. Zametki 51 (1992), no. 6, 27-31; English transl., Math. Notes 51 (1992), no. 5-6, 550-552. MR 1187473 (94g:42015)
  • 27. A. N. Kolmogorov and S. V. Fomin, Elements of the theory of functions and functional analysis, 6th ed., ``Nauka'', Moscow, 1989; English transl. of 1st ed., Vol. 1. Metric and normed spaces, Graylock Press, Rochester, NY, 1957; Vol. 2. Measure. The Lebesgue integral. Hilbert space, Graylock Press, Albany, NY, 1961. MR 1025126 (90k:46001); MR 0085462 (19:44d); MR 0118796 (22:9566a)

Similar Articles

Retrieve articles in St. Petersburg Mathematical Journal with MSC (2000): 26B15, 44A15, 49Q15

Retrieve articles in all journals with MSC (2000): 26B15, 44A15, 49Q15


Additional Information

Vit. V. Volchkov
Affiliation: Department of Mathematical Analysis and Function Theory, Donetsk National University, A. Malyshko Street, 3, Donetsk 83053, Ukraine
Email: volchkov@univ.donetsk.ua

DOI: https://doi.org/10.1090/S1061-0022-05-00861-7
Keywords: Spherical harmonics, Legendre functions, two-radii theorem, Pompeiu transformation
Received by editor(s): June 2, 2003
Published electronically: May 2, 2005
Additional Notes: Supported by the Ukraine Foundation for fundamental research (project no. 01.07/00241).
Article copyright: © Copyright 2005 American Mathematical Society

American Mathematical Society