Remote Access St. Petersburg Mathematical Journal

St. Petersburg Mathematical Journal

ISSN 1547-7371(online) ISSN 1061-0022(print)

 
 

 

On the asymptotics of solutions to the Neumann problem for hyperbolic systems in domains with conical points


Authors: A. Kokotov and B. Plamenevskii
Translated by: B. A. Plamenevskii
Original publication: Algebra i Analiz, tom 16 (2004), nomer 3.
Journal: St. Petersburg Math. J. 16 (2005), 477-506
MSC (1991): Primary 35C20, 35L20
DOI: https://doi.org/10.1090/S1061-0022-05-00862-9
Published electronically: May 2, 2005
MathSciNet review: 2083566
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Hyperbolic systems of second-order differential equations are considered in a domain with conical points at the boundary; in particular, the equations of elastodynamics are discussed. The asymptotics of solutions near conical points is studied. The ``hyperbolic character'' of the asymptotics shows itself in the properties of the coefficients (stress intensity factors) depending on time. Some formulas for the coefficients are presented and sharp estimates in Soboloev's norms are proved.


References [Enhancements On Off] (What's this?)

  • 1. J.-L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications. Vol. 1, Dunod, Paris, 1968. MR 0247243 (40:512)
  • 2. V. A. Kondrat'ev and O. A. Oleinik, Boundary value problems for a system in elasticity theory in unbounded domains. Korn inequalities, Uspekhi Mat. Nauk 43 (1988), no. 5, 55-98; English transl., Russian Math. Surveys 43 (1988), no. 5, 65-119. MR 0971465 (89m:35061)
  • 3. G. Fichera, Existence theorems in elasticity. Boundary value problems of elasticity with unilateral constraints, Handbuch der Physik, Band 6a/2, Springer-Verlag, Berlin-New York, 1972. MR 0347187 (49:11907)
  • 4. V. A. Kozlov and V. G. Maz'ya, Spectral properties of operator pencils generated by elliptic boundary value problems in a cone, Funktsional. Anal. i Prilozhen. 22 (1988), no. 2, 38-46; English transl., Funct. Anal. Appl. 22 (1988), no. 2, 114-121. MR 0947604 (90a:47125)
  • 5. B. A. Plamenevskii, On the Dirichlet problem for the wave equation in a cylinder with edges, Algebra i Analiz 10 (1998), no. 2, 197-228; English transl., St. Petersburg Math. J. 10 (1999), no. 2, 373-397. MR 1629407 (99i:35087a)
  • 6. A. Yu. Kokotov and B. A. Plamenevskii, On the Cauchy-Dirichlet problem for hyperbolic systems in a wedge, Algebra i Analiz 11 (1999), no. 3, 140-195; English transl., St. Petersburg Math. J. 11 (2000), no. 3, 497-534. MR 1711368 (2000j:35170)
  • 7. S. A. Nazarov and B. A. Plamenevskii, Elliptic problems in domains with piecewise smooth boundaries, de Gruyter Exp. Math., vol. 13, Walter de Gruyter, Berlin, 1994. MR 1283387 (95h:35001)
  • 8. A. Yu. Kokotov, P. Neittaämaki, and B. A. Plamenevskii, Problems of diffraction by a cone: asymptotic behavior of the solutions near the vertex, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 259 (1999), 122-144; English transl., J. Math. Sci. 109 (2002), no. 5, 1894-1910. MR 1754360 (2001m:35195)
  • 9. -, The Neumann problem for the wave equation in a cone, Probl. Mat. Anal., vyp. 20, ``Nauchn. Kniga'', Novosibirsk, 2000, pp. 71-110; English transl., J. Math. Sci. 102 (2000), no. 5, 4400-4428. MR 1807064 (2002k:35180)
  • 10. V. G. Maz'ya and B. A. Plamenevskii, The coefficients in the asymptotics of the solutions of elliptic boundary value problems in a cone, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 52 (1975), 110-127; English transl., J. Soviet Math. 9 (1978), no. 5, 750-764. MR 0407445 (53:11220)
  • 11. V. A. Kozlov, V. G. Maz'ya, and J. Rossmann, Elliptic boundary value problems in domains with point singularities, Math. Surveys Monographs, vol. 52, Amer. Math. Soc., Providence, RI, 1997. MR 1469972 (98f:35038)
  • 12. S. A. Nazarov and B. A. Plamenevskii, The Neumann problem for selfadjoint elliptic systems in a domain with a piecewise-smooth boundary, Trudy Leningrad. Mat. Obshch. 1 (1991), 174-211; English transl., Amer. Math. Soc. Transl. Ser. 2, vol. 155, Amer. Math. Soc., Providence, RI, 1993, pp. 169-206. MR 1104210 (92e:35065)
  • 13. G. Eskin, The wave equation in a wedge with general boundary conditions, Comm. Partial Differential Equations 17 (1992), no. 1-2, 99-160. MR 1151258 (92m:35152)
  • 14. J. Cheeger and M. Taylor, On the diffraction of waves by conical singularities. I, II, Comm. Pure Appl. Math. 35 (1982), 275-331, 487-529. MR 0649347 (84h:35091a); MR 0657825 (84h:35091b)
  • 15. M. Uchida, Microlocal analysis of diffraction by a corner, Ann. Sci. École Norm. Sup. (4) 25 (1992), no. 1, 47-75. MR 1152613 (93b:35004)
  • 16. P. Gérard and G. Lebeau, Diffusion d'une onde par un coin, J. Amer. Math. Soc. 6 (1993), no. 2, 341-424. MR 1157289 (93f:35130)
  • 17. P. Grisvard, Contrôlabilité exacte des solutions de l'équation des ondes en présence de singularités, J. Math. Pures Appl. (9) 68 (1989), 215-259. MR 1010769 (90i:49045)
  • 18. V. A. Borovikov, Diffraction by polygons and polyhedra, ``Nauka'', Moscow, 1966. (Russian) MR 0218058 (36:1147)
  • 19. V. B. Poruchikov, Methods of the dynamic theory of elasticity, ``Nauka'', Moscow, 1986. (Russian) MR 0846431 (87g:73033)
  • 20. V. A. Dobrushkin, Boundary value problems of the dynamic theory of elasticity for wedge-shaped domains, ``Nauka i Tekhnika'', Minsk, 1988. (Russian) MR 0993072 (91e:73023)
  • 21. I. I. Mel'nikov, Singularities of the solution of a mixed problem for second-order hyperbolic equations in domains with a piecewise-smooth boundary, Uspekhi Mat. Nauk 37 (1982), no. 1, 149-150; English transl., Russian Math. Surveys 37 (1982), no. 1, 168-169. MR 0643778 (84j:35106)
  • 22. Nguyen Manh Hung, Asymptotics of solutions of the first boundary-value problem for strongly hyperbolic systems near a conical point of the boundary of a domain, Mat. Sb. 190 (1999), no. 7, 103-126; English transl., Sb. Math. 190 (1999), no. 7, 1035-1058. MR 1725214 (2000m:35117)
  • 23. V. G. Maz'ya and J. Rossmann, Über die Asymptotik der Lösungen elliptischer Randwertaufgaben in der Umgebung von Kanten, Math. Nachr. 138 (1988), 27-53. MR 0975198 (90a:35079)
  • 24. A. Erdélyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, Higher transcendental functions. Vols. I, II, McGraw-Hill Book Co., Inc., New York etc., 1953. MR 0058756 (15:419i)
  • 25. L. Hörmander, The analysis of linear partial differential operators. 1. Distribution theory and Fourier analysis, Grundlehren Math. Wiss., vol. 256, Springer-Verlag, Berlin, 1983. MR 0717035 (85g:35002a)
  • 26. V. G. Maz'ya and B. A. Plamenevskii, Asymptotic behavior of the fundamental solutions of elliplic boundary value problems in domains with conical points, Probl. Mat. Anal., vyp. 7, Leningrad. Univ., Leningrad, 1979, pp. 100-145; English transl. in J. Soviet Math. 35 (1986), no. 1. MR 0559106 (81e:35042)

Similar Articles

Retrieve articles in St. Petersburg Mathematical Journal with MSC (1991): 35C20, 35L20

Retrieve articles in all journals with MSC (1991): 35C20, 35L20


Additional Information

A. Kokotov
Affiliation: Concordia University, Montreal, Canada
Email: kokotov@online.ru

B. Plamenevskii
Affiliation: Department of Physics, St. Petersburg State University, Ulyanovskaya 1, Petrodvorets, St. Petersburg 198504, Russia
Email: boris.plamenevskij@pobox.spbu.ru

DOI: https://doi.org/10.1090/S1061-0022-05-00862-9
Keywords: Hyperbolic systems, weighted estimates, asymptotics
Received by editor(s): December 1, 2003
Published electronically: May 2, 2005
Article copyright: © Copyright 2005 American Mathematical Society

American Mathematical Society