Remote Access St. Petersburg Mathematical Journal

St. Petersburg Mathematical Journal

ISSN 1547-7371(online) ISSN 1061-0022(print)

 
 

 

Bernstein-type inequalities for the derivatives of rational functions in $L_{p}$-spaces, $0<p<1$, on Lavrent'ev curves


Author: A. A. Pekarskii
Translated by: S. V. Kislyakov
Original publication: Algebra i Analiz, tom 16 (2004), nomer 3.
Journal: St. Petersburg Math. J. 16 (2005), 541-560
MSC (2000): Primary 41A17, 41A20, 41A25, 41A27, 30D55
DOI: https://doi.org/10.1090/S1061-0022-05-00864-2
Published electronically: May 2, 2005
MathSciNet review: 2083568
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $S$ be a simple or a closed Lavrent'ev curve on the complex plane, let $0<p<1$with $1/p \not\in \mathbb{N} $, and let $s\in\mathbb{N} $. It is shown that for an arbitrary rational function $r$ of degree $n$such that $\vert r\vert^{p}$ is integrable on $S$ the following inequality is fulfilled:

\begin{displaymath}\bigg(\int_{S}\vert r^{(s)}(z)\vert^{\sigma} \,\vert dz\vert\... ...igg(\int_{S} \vert r(z)\vert^{p} \,\vert dz\vert\bigg)^{1/p} , \end{displaymath}

where $1/\sigma=s+1/p$, and $c>0$ depends only on $S, p$, and $s$.

Earlier (in 1995) this result was obtained by the author and Stahl for the segment and the circle. The inequality is used to deduce an inverse rational approximation theorem in the Smirnov class $E_{p}$. Other rational approximation problems in $L_{p}$ and $E_{p}$ are also treated.


References [Enhancements On Off] (What's this?)

  • 1. A. B. Aleksandrov, Essays on nonlocally convex Hardy classes, Complex Analysis and Spectral Theory (Leningrad, 1979/1980), Lecture Notes in Math., vol. 864, Springer, Berlin-New York, 1981, pp. 1-89. MR 0643380 (84h:46066)
  • 2. -, Two analogues of Riesz's theorem on conjugate functions for Smirnov spaces $E_{p}$, $0<p<1$, Operator Theory and Function Theory, No. 1, Leningrad. Univ., Leningrad, 1983, pp. 9-20. (Russian) MR 0768774 (86e:30034)
  • 3. G. David, Opérateurs intégraux singuliers sur certaines courbes du plan complexe, Ann. Sci. École Norm. Sup. (4) 17 (1984), 157-189. MR 0744071 (85k:42026)
  • 4. V. I. Danchenko, Some integral estimates for derivatives of rational functions on sets with bounded density, Mat. Sb. 187 (1996), no. 10, 33-52; English transl., Sb. Math. 187 (1996), no. 10, 1443-1463. MR 1438975 (98c:30046)
  • 5. V. I. Danchenko and E. P. Dolzhenko, The mapping of sets of finite $\alpha$-measure by means of rational functions, Izv. Akad. Nauk SSSR Ser. Mat. 51 (1987), no. 6, 1309-1321; English transl., Math. USSR-Izv. 31 (1988), no. 3, 621-633. MR 0933966 (89f:30014)
  • 6. E. M. Dyn'kin, Estimates for analytic functions in Jordan domains, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 73 (1977), 70-90; English transl., J. Soviet Math. 34 (1986), no. 6, 2060-2073. MR 0513169 (80a:30041)
  • 7. -, Methods of the theory of singular integrals. II. The Littlewood-Paley theory and its applications, Commutative Harmonic Analysis. IV, Itogi Nauki i Tekhniki Ser. Sovrem. Probl. Mat. Fund. Naprav., vol. 42, VINITI, Moscow, 1989, pp. 105-198; English transl., Encyclopaedia Math. Sci., vol. 42, Springer-Verlag, Berlin, 1992, pp. 97-194. MR 1027848 (91j:42015); MR 1299536
  • 8. -, Inequalities for rational functions, J. Approx. Theory 91 (1997), no. 3, 349-367. MR 1486473 (99a:41010)
  • 9. -, Rational functions in Bergman spaces, Complex Analysis, Operators, and Related Topics, Oper. Theory Adv. Appl., vol. 113, Birkhäuser, Basel, 2000, pp. 77-94. MR 1771753 (2001h:46030)
  • 10. P. L. Duren, Theory of $H^{p}$ spaces, Pure Appl. Math., vol. 38, Acad. Press, New York-London, 1970. MR 0268655 (42:3552)
  • 11. J. B. Garnett, Bounded analytic functions, Pure Appl. Math., vol. 96, Acad. Press, Inc., New York-London, 1981. MR 0628971 (83g:30037)
  • 12. T. Gamelin, Uniform algebras, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1969. MR 0410387 (53:14137)
  • 13. D. S. Jerison and C. E. Kenig, Hardy spaces, $A_{\infty}$, and singular integrals on chord-arc domains, Math. Scand. 50 (1982), 221-247. MR 0672926 (84k:30037)
  • 14. V. P. Misyuk, Bernstein-type inequalities for derivatives of rational functions with respect to plane measure, Trudy Inst. Mat. Nats. Akad. Navuk Belarusi 9 (2001), 105-108. (Russian)
  • 15. A. A. Pekarskii, Best rational approximations in a complex domain, Trudy Mat. Inst. Steklov. 190 (1989), 222-233; English transl., Proc. Steklov Inst. Math. 1992, no. 1, 231-243. MR 1005346 (90i:30061)
  • 16. -, Generalized rational approximation in the disk, Vestsi Akad. Navuk BSSR Ser. Fiz.-Mat. Navuk 1990, no. 6, 9-14. (Russian) MR 1095525 (92f:30058)
  • 17. A. A. Pekarskii and H. Stahl, Bernstein-type inequalities for derivatives of rational functions in $L_p$ spaces, $p<1$, Mat. Sb. 186 (1995), no. 1, 119-130; English transl., Sb. Math. 186 (1995), no. 1, 121-131. MR 1641684 (99f:41014)
  • 18. A. A. Pekarskii, Rational and piecewise-polynomial approximations in the spaces $L_{p}$ and $H_{p}$, Vestsi Nats. Akad. Navuk Belarusi Ser. Fiz.-Mat. Navuk 2000, no. 3, 11-16. (Russian) MR 1826195 (2002d:30042)
  • 19. -, Rational approximations of functions with derivatives in a V. I. Smirnov space, Algebra i Analiz 13 (2001), no. 2, 165-190; English transl., St. Petersburg Math. J. 13 (2002), no. 2, 281-300. MR 1834865 (2002d:41020)
  • 20. I. I. Privalov, Boundary properties of analytic functions, Gos. Izdat. Tekhn.-Teor. Lit., Moscow-Leningrad, 1950. (Russian) MR 0047765 (13:926h)
  • 21. -, Introduction to the theory of functions of a complex variable, ``Nauka'', Moscow, 1977, 1984 (13th ed.). (Russian) MR 0779289 (86c:30002)
  • 22. E. A. Sevast'yanov, Certain estimates in integral metrics for the derivatives of rational functions, Mat. Zametki 13 (1973), no. 4, 499-510; English transl., Math. Notes 13 (1973), 303-309. MR 0323975 (48:2327)

Similar Articles

Retrieve articles in St. Petersburg Mathematical Journal with MSC (2000): 41A17, 41A20, 41A25, 41A27, 30D55

Retrieve articles in all journals with MSC (2000): 41A17, 41A20, 41A25, 41A27, 30D55


Additional Information

A. A. Pekarskii
Affiliation: Belorussian State Technological University, Ul. Sverdlova 13a, Minsk 220630, Belorussia
Email: pekarski@bstu.unibel.by

DOI: https://doi.org/10.1090/S1061-0022-05-00864-2
Keywords: Rational function, Bernstein-type inequalities, Smirnov space
Received by editor(s): September 1, 2003
Published electronically: May 2, 2005
Additional Notes: Supported by the Russian–Belorussian Foundation for Basic Research (grant no. F02R-057).
Article copyright: © Copyright 2005 American Mathematical Society

American Mathematical Society