Remote Access St. Petersburg Mathematical Journal

St. Petersburg Mathematical Journal

ISSN 1547-7371(online) ISSN 1061-0022(print)

 
 

 

On the spectrum of the Wannier-Stark operator


Author: A. A. Pozharskii
Translated by: B. M. Bekker
Original publication: Algebra i Analiz, tom 16 (2004), nomer 3.
Journal: St. Petersburg Math. J. 16 (2005), 561-581
MSC (2000): Primary 34L40
DOI: https://doi.org/10.1090/S1061-0022-05-00865-4
Published electronically: May 2, 2005
MathSciNet review: 2083569
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [AGZ] J. Avron, L. Gunter, and J. Zak, Energy uncertainty in ``Stark ladder'', Solid State Comm. 16 (1975), no. 2, 189-191.
  • [AZ] J. Avron and J. Zak, Instability of the continuous spectrum: the N-band Stark ladder, J. Math. Phys. 18 (1977), no. 5, 918-921. MR 0438948 (55:11851)
  • [B1] V. S. Buslaev, Kronig-Penney electron in a homogeneous electric field, Differential Operators and Spectral Theory, Amer. Math. Soc. Transl. (2), vol. 189, Amer. Math. Soc., Providence, RI, 1999, pp. 45-57. MR 1730502 (2001b:81039)
  • [DK] P. Deift and R. Killip, On the absolutely continuous spectrum of one-dimensional Schrödinger operators with square summable potentials, Comm. Math. Phys. 203 (1999), no. 2, 341-347. MR 1697600 (2000c:34223)
  • [DSS] F. Delyon, B. Simon, and B. Souillard, From power pure point to continuous spectrum in disordered systems, Ann. Inst. H. Poincaré Phys. Théor. 42 (1985), no. 3, 283-309. MR 0797277 (87d:35098)
  • [E] P. Exner, The absence of the absolutely continuous spectrum for $\delta'$ Wannier-Stark ladders, J. Math. Phys. 36 (1995), no. 9, 4561-4570. MR 1347099 (96g:81050)
  • [GP] D. J. Gilbert and D. B. Pearson, On subordinacy and analysis of the spectrum of one-dimensional Schrödinger operators, J. Math. Anal. Appl. 128 (1987), no. 1, 30-56. MR 0915965 (89a:34033)
  • [K] T. Kato, Perturbation theory for linear operators, Springer-Verlag, Berlin, 1995. MR 1335452 (96a:47025)
  • [LS] Y. Last and B. Simon, Eigenfunctions, transfer matrices, and absolutely continuous spectrum of one-dimensional Schrödinger operators, Invent. Math. 135 (1999), no. 2, 329-367. MR 1666767 (2000f:47060)
  • [NN] A. Nenciu and G. Nenciu, Dynamics of Bloch electrons in external electric fields. I. Bounds for interband transitions and effective Wannier Hamiltonians, J. Phys. A 14 (1981), no. 10, 2817-2827. MR 0629327 (82j:81069)
  • [BS] M. Sh. Birman and M. Z. Solomyak, Spectral theory of selfadjoint operators in Hilbert space, Leningrad. Gos. Univ., Leningrad, 1980; English transl., D. Reidel Publishing Co., Dordrecht, 1987. MR 0609148 (82k:47001); MR 1192782 (93g:47001)
  • [B2] V. S. Buslaev, Adiabatic perturbation of a periodic potential, Teoret. Mat. Fiz. 58 (1984), no. 2, 233-243; English transl., Theoret. and Math. Phys. 58 (1984), no. 2, 153-159. MR 0743409 (85i:34032)
  • [Ba] M. V. Buslaeva, The one-dimensional Schrödinger operator with accelerating potential, Funktsional. Anal. i Prilozhen. 18 (1984), no. 1, 65-66; English transl., Functional Anal. Appl. 18 (1984), no. 1, 53-55. MR 0739094 (86f:81026)
  • [BD1] V. S. Buslaev and L. A. Dmitrieva, Adiabatic perturbation of a periodic potential. II, Teoret. Mat. Fiz. 73 (1987), no. 3, 430-442; English transl., Theoret. and Math. Phys. 73 (1987), no. 3, 1320-1329. MR 0939788 (89c:34058)
  • [BD2] -, A Bloch electron in an external field, Algebra i Analiz 1 (1989), no. 2, 1-29; English transl., Leningrad Math. J. 1 (1990), no. 2, 287-320. MR 1025153 (91g:81162)
  • [BF] V. S. Buslaev and L. D. Faddeev, Formulas for traces for a singular Sturm-Liouville differential operator, Dokl. Akad. Nauk SSSR 132 (1960), no. 1, 13-16; English transl., Soviet Math. Dokl. 1 (1960), 451-454. MR 0120417 (22:11171)
  • [Z] A. Zygmund, Trigonometric series, Cambridge Univ. Press, Cambridge, 1988. MR 0933759 (89c:42001)
  • [L] B. M. Levitan, Inverse Sturm-Liouville problems, ``Nauka'', Moscow, 1984; English transl., VSP, Zeist, 1987. MR 0771843 (86d:34002); MR 0933088 (89b:34001)
  • [P] A. A. Pozharskii, Wannier-Stark type operators with singular potentials, Algebra i Analiz 14 (2002), no. 1, 158-193; English transl., St. Petersburg Math. J. 14 (2003), no. 1, 119-145. MR 1893324 (2003e:81051)

Similar Articles

Retrieve articles in St. Petersburg Mathematical Journal with MSC (2000): 34L40

Retrieve articles in all journals with MSC (2000): 34L40


Additional Information

A. A. Pozharskii
Affiliation: Department of Physics, St. Petersburg State University, Ulyanovskaya 1, Petrodvorets, St. Petersburg 198504, Russia
Email: lehman@sbor.net

DOI: https://doi.org/10.1090/S1061-0022-05-00865-4
Keywords: Schr\"odinger operator, essentially selfadjoint operator, continuous spectrum
Received by editor(s): August 10, 2003
Published electronically: May 2, 2005
Article copyright: © Copyright 2005 American Mathematical Society

American Mathematical Society