Remote Access St. Petersburg Mathematical Journal

St. Petersburg Mathematical Journal

ISSN 1547-7371(online) ISSN 1061-0022(print)

 

 

Absolute continuity of the ``even" periodic Schrödinger operator with nonsmooth coefficients


Authors: M. Tikhomirov and N. Filonov
Translated by: M. Tikhomirov
Original publication: Algebra i Analiz, tom 16 (2004), nomer 3.
Journal: St. Petersburg Math. J. 16 (2005), 583-589
MSC (2000): Primary 35Q40
Published electronically: May 2, 2005
MathSciNet review: 2083570
Full-text PDF Free Access

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. M. Sh. Birman and M. Z. Solomyak, Schrödinger operator. Estimates for number of bound states as function-theoretical problem, Spectral theory of operators (Novgorod, 1989) Amer. Math. Soc. Transl. Ser. 2, vol. 150, Amer. Math. Soc., Providence, RI, 1992, pp. 1–54. MR 1157648
  • 2. M. Sh. Birman and T. A. Suslina, Absolute continuity of a two-dimensional periodic magnetic Hamiltonian with discontinuous vector potential, Algebra i Analiz 10 (1998), no. 4, 1–36 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 10 (1999), no. 4, 579–601. MR 1654063
  • 3. M. Sh. Birman and T. A. Suslina, A periodic magnetic Hamiltonian with a variable metric. The problem of absolute continuity, Algebra i Analiz 11 (1999), no. 2, 1–40 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 11 (2000), no. 2, 203–232. MR 1702587
  • 4. A. N. Kolmogorov and S. V. Fomin, Elementy teorii funktsii i funktsionalnogo analiza, 6th ed., “Nauka”, Moscow, 1989 (Russian). With a supplement, “Banach algebras”, by V. M. Tikhomirov. MR 1025126
    A. N. Kolmogorov and S. V. Fomin, Elements of the theory of functions and functional analysis. Vol. 1. Metric and normed spaces, Graylock Press, Rochester, N. Y., 1957. Translated from the first Russian edition by Leo F. Boron. MR 0085462
    A. N. Kolmogorov and S. V. Fomin, Elements of the theory of functions and functional analysis. Vol. 2: Measure. The Lebesgue integral. Hilbert space, Translated from the first (1960) Russian ed. by Hyman Kamel and Horace Komm, Graylock Press, Albany, N.Y., 1961. MR 0118796
  • 5. Herbert Koch and Daniel Tataru, Carleman estimates and unique continuation for second-order elliptic equations with nonsmooth coefficients, Comm. Pure Appl. Math. 54 (2001), no. 3, 339–360. MR 1809741, 10.1002/1097-0312(200103)54:3<339::AID-CPA3>3.0.CO;2-D
  • 6. Abderemane Morame, Absence of singular spectrum for a perturbation of a two-dimensional Laplace-Beltrami operator with periodic electromagnetic potential, J. Phys. A 31 (1998), no. 37, 7593–7601. MR 1652918, 10.1088/0305-4470/31/37/017
  • 7. Michael Reed and Barry Simon, Methods of modern mathematical physics. IV. Analysis of operators, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1978. MR 0493421
  • 8. Alexander V. Sobolev, Absolute continuity of the periodic magnetic Schrödinger operator, Invent. Math. 137 (1999), no. 1, 85–112. MR 1703339, 10.1007/s002220050324
  • 9. T. A. Suslina and R. G. Shterenberg, Absolute continuity of the spectrum of the Schrödinger operator with the potential concentrated on a periodic system of hypersurfaces, Algebra i Analiz 13 (2001), no. 5, 197–240 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 13 (2002), no. 5, 859–891. MR 1882869
  • 10. Lawrence E. Thomas, Time dependent approach to scattering from impurities in a crystal, Comm. Math. Phys. 33 (1973), 335–343. MR 0334766
  • 11. N. Filonov, Second-order elliptic equation of divergence form having a compactly supported solution, J. Math. Sci. (New York) 106 (2001), no. 3, 3078–3086. Function theory and phase transitions. MR 1906035, 10.1023/A:1011379807662
  • 12. L. Friedlander, On the spectrum of a class of second order periodic elliptic differential operators, Comm. Math. Phys. 229 (2002), no. 1, 49–55. MR 1917673, 10.1007/s00220-002-0675-6
  • 13. R. Shterenberg, Absolute continuity of the spectrum of a two-dimensional periodic magnetic Schrödinger operator with positive electric potential, Trudy S.-Peterburg. Mat. Obshch. 9 (2001), 199-233. (Russian)
  • 14. Friedmar Schulz, On the unique continuation property of elliptic divergence form equations in the plane, Math. Z. 228 (1998), no. 2, 201–206. MR 1630571, 10.1007/PL00004610

Similar Articles

Retrieve articles in St. Petersburg Mathematical Journal with MSC (2000): 35Q40

Retrieve articles in all journals with MSC (2000): 35Q40


Additional Information

M. Tikhomirov
Affiliation: Department of Physics, St. Petersburg State University, Ulyanovskaya 1, Petrodvorets, St. Petersburg 198504, Russia
Email: misha@mt5788.spb.edu

N. Filonov
Affiliation: Department of Physics, St. Petersburg State University, Ulyanovskaya 1, Petrodvorets, St. Petersburg 198504, Russia
Email: filonov@mph.phys.spbu.ru

DOI: https://doi.org/10.1090/S1061-0022-05-00866-6
Keywords: Absolute continuity of the spectrum, periodic Schr\"odinger operator
Received by editor(s): September 1, 2003
Published electronically: May 2, 2005
Additional Notes: The first author was supported by RFBR (grants nos. 01–01–00218 and 02–01–00798)
Article copyright: © Copyright 2005 American Mathematical Society