Remote Access St. Petersburg Mathematical Journal

St. Petersburg Mathematical Journal

ISSN 1547-7371(online) ISSN 1061-0022(print)



Functional integration and the two-point correlation function of the one-dimensional Bose gas in a harmonic potential

Authors: N. M. Bogoliubov and C. Malyshev
Translated by: the authors
Original publication: Algebra i Analiz, tom 17 (2005), nomer 1.
Journal: St. Petersburg Math. J. 17 (2006), 63-84
MSC (2000): Primary 81S40; Secondary 42C10
Published electronically: January 19, 2006
MathSciNet review: 2140675
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A quantum field-theoretical model which describes a spatially nonhomogeneous one-dimensional nonrelativistic repulsive Bose gas in an external harmonic potential is considered. The two-point thermal correlation function of the Bose gas is calculated in the framework of the functional integration approach. The calculations are done in the coordinate representation. The method of successive integration first over the ``high-energy'' functional variables and then over the ``low-energy'' ones is used. The effective action functional for the low-energy variables is calculated in one-loop approximation. The functional integral representation for the correlation function is obtained in terms of the low-energy variables and is estimated with the help of stationary phase approximation. The asymptotics of the correlation function is studied in the limit when the temperature tends to zero while the volume occupied by the nonhomogeneous Bose gas increases infinitely. It is demonstrated that the behavior of the thermal correlation function in this limit is power-like and is governed by the critical exponent that depends on the spatial and thermal arguments.

References [Enhancements On Off] (What's this?)

  • 1. M.-O. Mewes, M. R. Andrews, N. J. van Druten, D. M. Kurn, D. S. Durfee, and W. Ketterle, Bose-Einstein condensation in a tightly confining dc magnetic trap, Phys. Rev. Lett. 77 (1996), 416-419.
  • 2. D. S. Jin, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, Collective excitations of a Bose-Einstein condensate in a dilute gas, Phys. Rev. Lett. 77 (1996), 420-423.
  • 3. A. Görlitz, J. M. Vogels, A. E. Leanhardt, C. Raman, T. L. Gustavson, J. R. Abo-Shaeer, A. P. Chikkatur, S. Gupta, S. Inouye, T. Rosenband, and W. Ketterle, Realization of Bose-Einstein condensates in lower dimensions, Phys. Rev. Lett. 87 (2001), 130402.
  • 4. H. Moritz, T. Stöferle, M. Köhl, and T. Esslinger, Exciting collective oscillations in a trapped 1D gas, Phys. Rev. Lett. 91 (2003), 250402.
  • 5. C. J. Pethic and H. Smith, Bose-Einstein condensation in dilute gases, Cambridge Univ. Press, Cambridge, 2002.
  • 6. N. N. Bogolyubov, Selected works in three volumes. Vols. 1-3, ``Naukova Dumka'', Kiev, 1969-1971. (Russian) MR 0239922 (39:1277); MR 0414297 (54:2400)
  • 7. V. N. Popov and L. D. Faddeev, An approach to the theory of the low-temperature Bose gas, Zh. Èksper. Teoret. Fiz. 47 (1964), no. 4, 1315-1321; English transl., Soviet Phys. JETP 20 (1965), 890-893. MR 0187837 (32:5282)
  • 8. V. N. Popov, On the theory of superfluidity of the two-dimensional and one-dimensional Bose systems, Teoret. Mat. Fiz. 11 (1972), no. 3, 354-365. (Russian)
  • 9. E. K. Sklyanin and L. D. Faddeev, Quantum-mechanical approach to completely integrable field theory models, Dokl. Akad. Nauk SSSR 243 (1978), no. 6, 1430-1433; English transl., Soviet Phys. Dokl. 23 (1978), 902-904.
  • 10. L. D. Faddeev, Quantum completely integrable models in field theory, L. D.  Faddeev. 40 Years in Mathematical Physics, World Sci. Ser. 20th Century Math., vol. 2, World Sci., Singapore, 1995, pp. 187-235. MR 1372058 (97c:01048)
  • 11. N. M. Bogolyubov, A. G. Izergin, and V. E. Korepin, Correlation functions of integrable systems and the quantum inverse problem method, ``Nauka'', Moscow, 1992. (Russian) MR 1225798 (95j:81240)
  • 12. V. E. Korepin, N. M. Bogoliubov, and A. G. Izergin, Quantum inverse scattering method and correlation functions, Cambridge Univ. Press, Cambridge, 1993. MR 1245942 (95b:81224)
  • 13. E. H. Lieb, R. Seiringer, and J. Yngvason, One-dimensional behavior of dilute, trapped Bose gases, Comm. Math. Phys. 244 (2004), 347-393. MR 2031035 (2005b:82012)
  • 14. M. Olshanii, Atomic scattering in the presence of an external confinement and a gas of impenetrable bosons, Phys. Rev. Lett. 81 (1998), 938-941.
  • 15. M. D. Girardeau, Hieu Nguyen, and M. Olshanii, Effective interactions, Fermi-Bose duality, and ground states of ultracold atomic vapors in tight de Broglie waveguides, arXiv:cond-mat/0403721
  • 16. N. M. Bogoliubov, C. Malyshev, R. K. Bullough, V. S. Kapitonov, and J. Timonen, Asymptotic behaviour of correlation functions in the trapped Bose gas, Fiz. Èlementar. Chastits i Atom. Yadra 31 (2000), vyp. 7B, 115-121.
  • 17. N. M. Bogolyubov, Multiparticle correlation functions for a trapped Bose gas, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 269 (2000), 125-134; English transl., J. Math. Sci. (New York) 115 (2003), no. 1, 1954-1959. MR 1805855
  • 18. N. M. Bogoliubov, R. K Bullough, V. S. Kapitonov, C. Malyshev, and J. Timonen, Finite-temperature correlations in the trapped Bose-Einstein gas, Europhys. Lett. 55 (2001), 755-761.
  • 19. R. K. Bullou, N. M. Bogolyubov, V. S. Kapitonov, K. L. Malyshev, I. Timonen, A. V. Rybin, G. G. Varzugin, and M. Lindberg, Quantum integrable and nonintegrable models based on the nonlinear Schrödinger equation for a realizable Bose-Einstein condensation in the dimension $ d+1$ $ (d=1,2,3)$, Teoret. Mat. Fiz. 134 (2003), no. 1, 55-73; English transl., Theoret. and Math. Phys. 134 (2003), no. 1, 47-61. MR 2021730 (2005d:81176)
  • 20. N. M. Bogoliubov, C. Malyshev, R. K. Bullough, and J. Timonen, Finite-temperature correlations in the one-dimensional trapped and untrapped Bose gases, Phys. Rev. A 69 (2004), 023619.
  • 21. V. N. Popov, Path integrals in quantum field theory and statistical physics, Atomizdat, Moscow, 1976; English transl., Functional integrals in quantum field theory and statistical physics, Math. Phys. Appl. Math., vol. 8, D. Reidel Publ. Co., Dordrecht-Boston, MA, 1983. MR 0522832 (58:25567); MR 0711367 (84m:81008)
  • 22. A. A. Slavnov and L. D. Faddeev, Introduction to the quantum theory of gauge fields, ``Nauka'', Moscow, 1978, 1988 (2nd ed.); English transl. of 2nd ed., Gauge fields. Introduction to quantum theory, Addison-Wesley Publ. Co., Redwood City, CA, 1991. MR 0542118 (80m:81053); MR 0939171 (90a:81002); MR 1200012 (94b:81001)
  • 23. A. N. Vasil'ev, Functional methods in quantum field theory and statistical physics, Leningrad. Gos. Univ., Leningrad, 1976; English transl., Gordon and Breach Sci. Publ., Amsterdam, 1998. MR 1740059 (2001f:81004)
  • 24. V. N. Popov, Functional integrals and collective excitations, Cambridge Univ. Press, Cambridge, 1987, 1990 (2nd edition). MR 0929257 (89e:81002); MR 1104220 (92a:82002)
  • 25. -, The possibility of violating the similarity law in the phase transition of a Bose system into a superfluid state, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 150 (1986), 87-103; English transl., J. Soviet Math. 46 (1989), no. 1, 1619-1630. MR 0861264 (87m:82032)
  • 26. C. Itzykson and J.-B. Zuber, Quantum field theory, McGraw-Hill, New York, 1980. MR 0585517 (82h:81002)
  • 27. P. Ramond, Field theory: A modern primer, Benjamin/Cummings Publ. Co, Reading, MA, 1981. MR 0602697 (84h:81077)
  • 28. F. Dalfovo, S. Giorgini, L. P. Pitaevskii, and S. Stringari, Theory of Bose-Einstein condensation in trapped gases, Rev. Modern Phys. 71 (1999), 463-512.
  • 29. M. Naraschewski and D. M. Stamper-Kurn, Analytical description of a trapped semi-ideal Bose gas at finite temperature, Phys. Rev. A 58 (1998), 2423-2426.
  • 30. S. Stringari, Collective excitations of a trapped Bose-condensed gas, Phys. Rev. Lett. 77 (1996), 2360-2363.
  • 31. -, Dynamics of Bose-Einstein condensed gases in highly deformed traps, Phys. Rev. A 58 (1998), 2385-2388.
  • 32. E. W. Hobson, The theory of spherical and ellipsoidal harmonics, Cambridge Univ. Press, Cambridge, 1931.
  • 33. D. S. Petrov, G. V. Shlyapnikov, and J. T. M. Walraven, Regimes of quantum degeneracy in trapped 1D gases, Phys. Rev. Lett. 85 (2000), 3745-3749.
  • 34. D. L. Luxat and A. Griffin, Dynamic correlation functions in one-dimensional quasicondensates, Phys. Rev. A 67 (2003), 043603.
  • 35. W. Magnus, F. Oberhettinger, and R. P. Soni, Formulas and theorems for the special functions of mathematical physics, Grundlehren Math. Wiss., vol. 52, Springer-Verlag New York, Inc., New York, 1966. MR 0232968 (38:1291)
  • 36. M. Abramowitz and I. A. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical tables, Dover, New York, 1992. MR 1225604 (94b:00012)

Similar Articles

Retrieve articles in St. Petersburg Mathematical Journal with MSC (2000): 81S40, 42C10

Retrieve articles in all journals with MSC (2000): 81S40, 42C10

Additional Information

N. M. Bogoliubov
Affiliation: St. Petersburg Branch, Steklov Mathematical Institute, Russian Academy of Sciences, Fontanka 27, St. Petersburg 191023, Russia

C. Malyshev
Affiliation: St. Petersburg Branch, Steklov Mathematical Institute, Russian Academy of Sciences, Fontanka 27, St. Petersburg 191023, Russia

Keywords: Bose gas, functional integration, correlation function
Received by editor(s): August 13, 2004
Published electronically: January 19, 2006
Additional Notes: Supported in part by RFBR (grant no. 04–01–00825) and by the Russian Academy of Sciences program “Mathematical Methods in Non-Linear Dynamics”.
Dedicated: Dedicated to Ludwig Dmitrievich Faddeev
Article copyright: © Copyright 2006 American Mathematical Society

American Mathematical Society