Remote Access St. Petersburg Mathematical Journal

St. Petersburg Mathematical Journal

ISSN 1547-7371(online) ISSN 1061-0022(print)

 
 

 

Interpolation of intersections by the real method


Author: S. V. Astashkin
Translated by: S. V. Kislyakov
Original publication: Algebra i Analiz, tom 17 (2005), nomer 2.
Journal: St. Petersburg Math. J. 17 (2006), 239-265
MSC (2000): Primary 46B70
DOI: https://doi.org/10.1090/S1061-0022-06-00902-2
Published electronically: February 10, 2006
MathSciNet review: 2159583
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ (X_0,X_1)$ be a Banach couple with $ X_0\cap X_1$ dense both in $ X_0$ and in $ X_1,$ and let $ (X_0,X_1)_{\theta,q}$ $ (0<\theta <1,$ $ 1\le q<\infty)$ denote the real interpolation spaces. Suppose $ \psi$ is a linear functional defined on some linear subspace $ M\subset X_0+X_1$ and satisfying $ \psi\in (X_0\cap X_1)^*,$ $ \psi\ne 0.$ Conditions are considered that ensure the natural identity

$\displaystyle (X_0\cap \operatorname{Ker}\psi,X_1\cap \operatorname{Ker}\psi)_{\theta,q} =(X_0,X_1)_{\theta,q}\cap \operatorname{Ker}\psi. $

The results obtained provide a solution for the problem posed by N. Krugljak, L. Maligranda, and L.-E. Persson and pertaining to interpolation of couples of intersections that are generated by an integral functional in a weighted $ L_p$-scale. Furthermore, an expression is found for the $ \mathcal{K}$-functional on a couple of intersections corresponding to a linear functional, and some other related questions are treated.


References [Enhancements On Off] (What's this?)

  • 1. N. Krugljak, L. Maligranda, and L.-E. Persson, The failure of the Hardy inequality and interpolation of intersections, Ark. Mat. 37 (1999), 323-344. MR 1714765 (2000h:46035)
  • 2. J. Bergh and J. Löfström, Interpolation spaces. An introduction, Grundlehren Math. Wiss., vol. 223, Springer-Verlag, Berlin-New York, 1976. MR 0482275 (58:2349)
  • 3. S. Ivanov and N. Kalton, Interpolation of subspaces and applications to exponential bases, Algebra i Analiz 13 (2001), no. 2, 93-115; English transl., St. Petersburg Math. J. 13 (2002), no. 2, 221-239. MR 1834861 (2002f:46147)
  • 4. J.-L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications. Vols. 1-2, Dunod, Paris, 1968. MR 0247243 (40:512); MR 0247244 (40:513)
  • 5. H. Triebel, Eine Bemerkung zur nicht-kommutativen Interpolation, Math. Nachr. 69 (1975), 57-60. MR 0390797 (52:11620)
  • 6. -, Interpolation theory, function spaces, differential operators, North-Holland Math. Library, vol. 18, North-Holland Publ. Co., Amsterdam-New York, 1978. MR 0503903 (80i:46032b)
  • 7. L. Maligranda, On commutativity of interpolation with intersection, Rend. Circ. Mat. Palermo (2) Suppl. No. 10 (1985), 113-118 (1986). MR 0894276 (88j:46067)
  • 8. R. Wallsten, Remarks on interpolation of subspaces, Function Spaces and Applications (Lund, 1986), Lecture Notes in Math., vol. 1302, Springer, Berlin, 1988, pp. 410-419. MR 0942285 (89h:46042)
  • 9. G. Pisier, Interpolation between $ H^p$ spaces and noncommutative generalizations. I, Pacific J. Math. 155 (1992), 341-368. MR 1178030 (93f:46111)
  • 10. S. Janson, Interpolation of subcouples and quotient couples, Ark. Mat. 31 (1993), 307-338. MR 1263557 (95c:46124)
  • 11. S. V. Kislyakov and Q. Xu, Real interpolation and singular integrals, Algebra i Analiz 8 (1996), no. 4, 75-109; English transl., St. Petersburg Math. J. 8 (1997), no. 4, 593-615. MR 1418256 (98c:46161)
  • 12. J. Löfström, Interpolation of subspaces, Techn. Rep. no. 10, Univ. of Göteborg, 1997, 63 pp.
  • 13. S. V. Astashkin, About interpolation of subspaces of rearrangement invariant spaces generated by Rademacher system, Int. J. Math. Math. Sci. 25 (2001), no. 7, 451-465. MR 1823608 (2002e:46029)
  • 14. S. Kaijser and P. Sunehag, Interpolation of subspaces and the unit problem, Function Spaces, Interpolation Theory and Related Topics (Lund, 2000), de Gruyter, Berlin, 2002, pp. 345-353. MR 1943292 (2003k:46106)
  • 15. S. V. Astashkin, E. M. Semenov, and F. A. Sukochev, The Banach-Saks p-property, Math. Ann. 332 (2005), 879-900. MR 2179781
  • 16. Yu. A. Brudnyi and N. Ya. Krugljak, Interpolation functors and interpolation spaces. Vol. 1, North-Holland Math. Library, vol. 47, North-Holland Publ. Co., Amsterdam, 1991. MR 1107298 (93b:46141)
  • 17. S. G. Krein, Yu. I. Petunin, and E. M. Semenov, Interpolation of linear operators, ``Nauka'', Moscow, 1978; English transl., Transl. Math. Monogr., vol. 54, Amer. Math. Soc., Providence, RI, 1982. MR 0506343 (81f:46086); MR 0649411 (84j:46103)

Similar Articles

Retrieve articles in St. Petersburg Mathematical Journal with MSC (2000): 46B70

Retrieve articles in all journals with MSC (2000): 46B70


Additional Information

S. V. Astashkin
Affiliation: Samara State University, Ul. Akademika Pavlova 1, Samara 443011, Russia
Email: astashkn@ssu.samara.ru

DOI: https://doi.org/10.1090/S1061-0022-06-00902-2
Keywords: Interpolation space, real interpolation method, $\mathcal{K}$-functional, dilation indices of a function, spaces of measurable functions, weighted spaces
Received by editor(s): September 30, 2003
Published electronically: February 10, 2006
Article copyright: © Copyright 2006 American Mathematical Society

American Mathematical Society