Remote Access St. Petersburg Mathematical Journal

St. Petersburg Mathematical Journal

ISSN 1547-7371(online) ISSN 1061-0022(print)

 
 

 

Absence of eigenvalues for the generalized two-dimensional periodic Dirac operator


Author: L. I. Danilov
Translated by: A. Plotkin
Original publication: Algebra i Analiz, tom 17 (2005), nomer 3.
Journal: St. Petersburg Math. J. 17 (2006), 409-433
MSC (2000): Primary 35P05
DOI: https://doi.org/10.1090/S1061-0022-06-00911-3
Published electronically: March 9, 2006
MathSciNet review: 2167843
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A generalized two-dimensional periodic Dirac operator is considered, with $ L^{\infty}$-matrix-valued coefficients of the first-order derivatives and with complex matrix-valued potential. It is proved that if the matrix-valued potential has zero bound relative to the free Dirac operator, then the spectrum of the operator in question contains no eigenvalues.


References [Enhancements On Off] (What's this?)

  • 1. P. Kuchment, Floquet theory for partial differential equations, Oper. Theory Adv. Appl., vol. 60, Birkhäuser Verlag, Basel, 1993. MR 1232660 (94h:35002)
  • 2. P. Kuchment and S. Levendorskii, On the structure of spectra of periodic elliptic operators, Trans. Amer. Math. Soc. 354 (2002), no. 2, 537-569. MR 1862558 (2002g:35163)
  • 3. L. I. Danilov, On the spectrum of the Dirac operator with periodic potential, Preprint, Fiz.-Tekhn. Inst. Ural. Otdel. Akad. Nauk SSSR, Sverdlovsk, 1987. (Russian)
  • 4. -, A property of the integer lattice in $ \mathbf{R}^3$ and the spectrum of the Dirac operator with periodic potential, Preprint, Fiz.-Tekhn. Inst. Ural. Otdel. Akad. Nauk SSSR, Sverdlovsk, 1988. (Russian)
  • 5. -, On the spectrum of the Dirac operator in $ \mathbf{R}^n$ with periodic potential, Teoret. Mat. Fiz. 85 (1990), no. 1, 41-53; English transl., Theoret. and Math. Phys. 85 (1990), no. 1, 1039-1048 (1991). MR 1083951 (92a:35119)
  • 6. -, The spectrum of the Dirac operator with periodic potential. I, Fiz.-Tekhn. Inst. Ural. Otdel. Akad. Nauk SSSR, Izhevsk, 1991. (Manuscript dep. VINITI 12.12.91, no. 4588-B91.) (Russian)
  • 7. -, The spectrum of the Dirac operator with periodic potential. III, Fiz.-Tekhn. Inst. Ural. Otdel. Ross. Akad. Nauk, Izhevsk, 1992. (Manuscript dep. VINITI 10.07.92, no. 2252-B92.) (Russian)
  • 8. -, The spectrum of the Dirac operator with periodic potential. VI, Fiz.-Tekhn. Inst. Ural. Otdel. Ross. Akad. Nauk, Izhevsk, 1996. (Manuscript dep. VINITI 31.12.96, no. 3855-B96.) (Russian)
  • 9. -, Resolvent estimates and the spectrum of the Dirac operator with a periodic potential, Teoret. Mat. Fiz. 103 (1995), no. 1, 3-22; English transl., Theoret. and Math. Phys. 103 (1995), no. 1, 349-365. MR 1470934 (98f:35112)
  • 10. -, Absolute continuity of the spectrum of a periodic Dirac operator, Differentsial'nye Uravneniya 36 (2000), no. 2, 233-240; English transl., Differential Equations 36 (2000), no. 2, 262-271. MR 1773794 (2001f:47082)
  • 11. -, On the spectrum of the two-dimensional periodic Dirac operator, Teoret. Mat. Fiz. 118 (1999), no. 1, 3-14; English transl., Theoret. and Math. Phys. 118 (1999), no. 1, 1-11. MR 1702856 (2000h:35117)
  • 12. M. Sh. Birman and T. A. Suslina, The periodic Dirac operator is absolutely continuous, Integral Equations and Operator Theory 34 (1999), 377-395. MR 1702229 (2000h:47068)
  • 13. L. I. Danilov, On the spectrum of the periodic Dirac operator, Teoret. Mat. Fiz. 124 (2000), no. 1, 3-17; English transl., Theoret. and Math. Phys. 124 (2000), no. 1, 859-871. MR 1821309 (2002b:81028)
  • 14. M. Sh. Birman and T. A. Suslina, Two-dimensional periodic magnetic Hamiltonian is absolutely continuous, Algebra i Analiz 9 (1997), no. 1, 32-48; English transl., St. Petersburg Math. J. 9 (1998), no. 1, 21-32. MR 1458417 (98g:47038)
  • 15. -, Absolute continuity of the two-dimensional periodic magnetic Hamiltonian with discontinuous vector-valued potential, Algebra i Analiz 10 (1998), no. 4, 1-36; English transl., St. Petersburg Math. J. 10 (1999), no. 4, 579-601. MR 1654063 (99k:81060)
  • 16. I. S. Lapin, Absolute continuity of the spectra of two-dimensional periodic magnetic Schrödinger operator and Dirac operator with potentials in the Zygmund class, Probl. Mat. Anal., vyp. 22, S.-Peterburg. Univ., St. Petersburg, 2001, pp. 74-105; English transl., J. Math. Sci. (New York) 106 (2001), no. 3, 2952-2974. MR 1906028 (2003h:35182)
  • 17. A. V. Sobolev, Absolute continuity of the periodic magnetic Schrödinger operator, Invent. Math. 137 (1999), 85-112. MR 1703339 (2000g:35028)
  • 18. M. Sh. Birman and T. A. Suslina, Periodic magnetic Hamiltonian with variable metric. The problem of absolute continuity, Algebra i Analiz 11 (1999), no. 2, 1-40; English transl., St. Petersburg Math. J. 11 (2000), no. 2, 203-232. MR 1702587 (2000i:35026)
  • 19. L. I. Danilov, On the absolute continuity of the spectrum of periodic Schrödinger and Dirac operators. I, Fiz.-Tekhn. Inst. Ural. Otdel. Ross. Akad. Nauk, Izhevsk, 2000. (Manuscript dep. VINITI 15.06.00, no. 1683-B00.) (Russian)
  • 20. -, On the absolute continuity of the spectrum of a periodic Schrödinger operator, Mat. Zametki 73 (2003), no. 1, 49-62; English transl., Math. Notes 73 (2003), no. 1-2, 46-57. MR 1993539 (2004f:35130)
  • 21. Z. Shen, On absolute continuity of the periodic Schrödinger operators, Internat. Math. Res. Notices 2001, no. 1, 1-31. MR 1809495 (2002a:47078)
  • 22. -, Absolute continuity of periodic Schrödinger operators with potentials in the Kato class, Illinois J. Math. 45 (2001), no. 3, 873-893. MR 1879241 (2002m:25036)
  • 23. -, The periodic Schrödinger operators with potentials in the Morrey class, J. Funct. Anal. 193 (2002), no. 2, 314-345. MR 1929505 (2003k:47071)
  • 24. L. Friedlander, On the spectrum of a class of second order periodic elliptic differential operators, Comm. Math. Phys. 229 (2002), 49-55. MR 1917673 (2003k:35179)
  • 25. T. A. Suslina and R. G. Shterenberg, Absolute continuity of the spectrum of the Schrödinger operator with the potential concentrated on a periodic system of hypersurfaces, Algebra i Analiz 13 (2001), no. 5, 197-240; English transl., St. Petersburg Math. J. 13 (2002), no. 5, 859-891. MR 1882869 (2002m:35172)
  • 26. H. L. Cycon, R. G. Froese, W. Kirsch, and B. Simon, Schrödinger operators with application to quantum mechanics and global geometry, Springer-Verlag, Berlin 1987. MR 0883643 (88g:35003)
  • 27. A. Morame, Absence of singular spectrum for a perturbation of a two-dimensional Laplace-Beltrami operator with periodic electro-magnetic potential, J. Phys. A 31 (1998), 7593-7601. MR 1652918 (99i:81039)
  • 28. L. I. Danilov, On absolute continuity of the spectrum of periodic Schrödinger and Dirac operators. II, Fiz.-Tekhn. Inst. Ural. Otdel. Ross. Akad. Nauk, Izhevsk, 2001. (Manuscript dep. VINITI 09.04.01, no. 916-B2001.) (Russian)
  • 29. -, On the spectrum of the two-dimensional periodic Schrödinger and Dirac operators, Izv. Inst. Mat. i Inform. Udmurt. Univ., vyp. 3 (26), Izhevsk, 2002, pp. 3-98. (Russian)
  • 30. -, On the spectrum of the two-dimensional periodic Schrödinger operator, Teoret. Mat. Fiz. 134 (2003), no. 3, 447-459. (Russian) MR 2001818 (2004j:35210)
  • 31. -, On absolute continuity of the spectrum of periodic Schrödinger and Dirac operators. III, Fiz.-Tekhn. Inst. Ural. Otdel. Ross. Akad. Nauk, Izhevsk, 2002. (Manuscript dep. VINITI 22.10.02, no. 1798-B2002.) (Russian)
  • 32. -, On the absence of eigenvalues in the spectrum of two-dimensional periodic Dirac and Schrödinger operators, Izv. Inst. Mat. i Inform. Udmurt. Univ., vyp. 1 (29), Izhevsk, 2004, pp. 49-84. (Russian)
  • 33. M. Sh. Birman, T. A. Suslina, and R. G. Shterenberg, Absolute continuity of the spectrum of a two-dimensional Schrödinger operator with potential supported on a periodic system of curves, Algebra i Analiz 12 (2000), no. 6, 140-177; English transl., St. Petersburg Math. J. 12 (2001), no. 6, 983-1012. MR 1816514 (2002k:35227)
  • 34. R. G. Shterenberg, Absolute continuity of a two-dimensional magnetic periodic Schrödinger operator with electric potential of measure derivative type, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 271 (2000), 276-312; English transl., J. Math. Sci. (New York) 115 (2003), no. 6, 2862-2882. MR 1810620 (2002m:35171)
  • 35. -, Absolute continuity of the spectrum of two-dimensional periodic Schrödinger operators with positive electric potential, Algebra i Analiz 13 (2001), no. 4, 196-228; English transl., St. Petersburg Math. J. 13 (2002), no. 4, 659-683. MR 1865502 (2002j:35230)
  • 36. -, Absolute continuity of the spectrum of a two-dimensional magnetic periodic Schrödinger operator with positive electric potential, Trudy S.-Peterburg. Mat. Obshch. 9 (2001), 199-233; English transl. in Amer. Math. Soc. Transl. Ser. 2, vol. 209, Amer. Math. Soc., Providence, RI, 2003.
  • 37. -, Absolute continuity of spectra of two-dimensional periodic Schrödinger operators with strongly subordinate magnetic potentials, Report no. 21, 2002/2003, Mittag-Leffler Inst., Stockholm, 2002.
  • 38. T. A. Suslina and R. G. Shterenberg, Absolute continuity of the spectrum of the magnetic Schrödinger operator with metric in a two-dimensional periodic waveguide, Algebra i Analiz 14 (2002), no. 2, 159-206; English transl., St. Petersburg Math. J. 14 (2003), no. 2, 305-343. MR 1925885 (2003h:35185)
  • 39. R. G. Shterenberg, Schrödinger operator in a periodic waveguide on the plane and quasi-conformal mappings, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 295 (2003), 204-243. (Russian)
  • 40. A. V. Sobolev and J. Walthoe, Absolute continuity in periodic waveguides, Proc. London Math. Soc. (3) 85 (2002), no. 3, 717-741. MR 1936818 (2003j:35240)
  • 41. E. Shargorodsky and A. V. Sobolev, Quasi-conformal mappings and periodic spectral problems in dimension two, LANL Archives: math.SP/0109216 (2001).
  • 42. L. Thomas, Time dependent approach to scattering from impurities in a crystal, Comm. Math. Phys. 33 (1973), 335-343. MR 0334766 (48:13084)
  • 43. I. M. Gel'fand, Expansion in characteristic functions of an equation with periodic coefficients, Dokl. Akad. Nauk SSSR 73 (1950), no. 6, 1117-1120. (Russian) MR 0039154 (12:503a)
  • 44. M. Reed and B. Simon, Methods of modern mathematical physics. IV. Analysis of operators, Acad. Press, New York-London, 1978. MR 0493421 (58:12429c)
  • 45. -, Methods of modern mathematical physics. III. Scattering theory, Acad. Press, New York-London, 1979. MR 0529429 (90m:81085)

Similar Articles

Retrieve articles in St. Petersburg Mathematical Journal with MSC (2000): 35P05

Retrieve articles in all journals with MSC (2000): 35P05


Additional Information

L. I. Danilov
Affiliation: Physical-Technical Institute, Ural Branch of the Russian Academy of Sciences, Kirov Street 132, Izhevsk 426000, Russia
Email: danilov@otf.pti.udm.ru

DOI: https://doi.org/10.1090/S1061-0022-06-00911-3
Keywords: Generalized periodic Dirac operator, matrix-valued potential, absolutely continuous spectrum
Received by editor(s): January 12, 2004
Published electronically: March 9, 2006
Article copyright: © Copyright 2006 American Mathematical Society

American Mathematical Society