Remote Access St. Petersburg Mathematical Journal

St. Petersburg Mathematical Journal

ISSN 1547-7371(online) ISSN 1061-0022(print)



Generating Borel sets by balls

Author: E. Riss
Translated by: the author
Original publication: Algebra i Analiz, tom 17 (2005), nomer 4.
Journal: St. Petersburg Math. J. 17 (2006), 683-698
MSC (2000): Primary 46B20, 46B25, 28A05
Published electronically: May 3, 2006
MathSciNet review: 2173940
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: It is proved that an arbitrary infinite-dimensional Banach space with basis admits an equivalent norm such that any Borel set can be obtained from balls by taking complements and countable disjoint unions. For reflexive spaces, the new norm can be chosen arbitrarily close to the initial norm.

References [Enhancements On Off] (What's this?)

  • 1. L. Mejlbro, D. Preiss, and J. Tišer, Determination and differentiation of measures (in preparation).
  • 2. T. Keleti and D. Preiss, The balls do not generate all Borel sets using complements and countable disjoint unions, Math. Proc. Cambridge Philos. Soc. 128 (2000), no. 3, 539-547. MR 1744103 (2001d:28002)
  • 3. V. Olejcek, Generation of a $ q$-$ \sigma$-algebra in the plane, Proc. Conf. Topology and Measure, V (Binz, 1987), Wissensch. Beitr., Ernst-Moritz-Arndt Univ., Greensward, 1988, pp. 121-125. MR 1029569 (90k:28005)
  • 4. -, The $ \sigma$-class generated by balls contains all Borel sets, Proc. Amer. Math. Soc. 123 (1995), 3665-3675. MR 1327035 (96c:28001)
  • 5. S. Jackson and R. D. Mauldin, On the $ \sigma$-class generated by open balls, Math. Proc. Cambridge Philos. Soc. 127 (1999), 99-108. MR 1692499 (2000h:28001)
  • 6. M. Zelený, The Dynkin system generated by balls in $ \mathbb{R}^d$ contains all Borel sets, Proc. Amer. Math. Soc. 128 (2000), 433-437. MR 1695330 (2000h:03092)
  • 7. Y. Benyamini and J. Lindenstrauss, Geometric nonlinear functional analysis, Amer. Math. Soc. Colloq. Publ., No. 48, Amer. Math. Soc., Providence, RI, 2000. MR 1727673 (2001b:46001)
  • 8. P. Habala, P. Hájek, and V. Zizler, Introduction to Banach spaces, Prague, 1996.

Similar Articles

Retrieve articles in St. Petersburg Mathematical Journal with MSC (2000): 46B20, 46B25, 28A05

Retrieve articles in all journals with MSC (2000): 46B20, 46B25, 28A05

Additional Information

E. Riss
Affiliation: Russian State Pedagogical University, Moĭka 48, St. Petersburg 191186, Russia

Keywords: Dynkin system, monotone system, small balls, large balls, Borel sets
Received by editor(s): April 11, 2005
Published electronically: May 3, 2006
Article copyright: © Copyright 2006 American Mathematical Society

American Mathematical Society