Remote Access St. Petersburg Mathematical Journal

St. Petersburg Mathematical Journal

ISSN 1547-7371(online) ISSN 1061-0022(print)

 
 

 

Birkhoff's theorem for a family of probability spaces


Author: Y. Safarov
Translated by: the author
Original publication: Algebra i Analiz, tom 17 (2005), nomer 5.
Journal: St. Petersburg Math. J. 17 (2006), 797-813
MSC (2000): Primary 05C50, 60C05
DOI: https://doi.org/10.1090/S1061-0022-06-00930-7
Published electronically: July 20, 2006
MathSciNet review: 2241426
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Birkhoff's theorem on doubly stochastic matrices is extended to some countable families of discrete probability spaces with nonempty intersections.


References [Enhancements On Off] (What's this?)

  • [An] T. Ando, Majorization, doubly stochastic matrices, and comparison of eigenvalues, Linear Algebra Appl. 118 (1989), 163-248. MR 0995373 (90g:15034)
  • [Bi1] G. Birkhoff, Three observations on linear algebra, Univ. Nac. Tucumán. Revista A 5 (1946), 147-151. (Spanish) MR 0020547 (8:561a)
  • [Bi2] -, Lattice theory, Amer. Math. Soc. Colloq. Publ., vol. 25, rev. ed., Amer. Math. Soc., New York, 1948. MR 0029876 (10:673a)
  • [BR] B. R. Bapat and T. E. S. Raghavan, Nonnegative matrices and applications, Encyclopedia Math. Appl., vol. 64, Cambridge Univ. Press, Cambridge, 1997. MR 1449393 (98h:15038)
  • [BS] J. R. Brown and R. C. Shiflett, On extreme doubly stochastic measures, Michigan Math. J. 17 (1970), 249-254. MR 0265542 (42:451)
  • [CLMST] R. M. Caron, X. Li, P. Mikusinski, H. Sherwood, and M. D. Taylor, Nonsquare ``doubly stochastic'' matrices, Distributions with Fixed Marginals and Related Topics (Seattle, WA, 1993), IMS Lecture Notes Monogr. Ser., vol. 28, Inst. Math. Statist., Hayward, CA, 1996, pp. 65-75. MR 1485523 (99b:15025)
  • [Do] R. G. Douglas, On extremal measures and subspace density, Michigan Math. J. 11 (1964), 243-246. MR 0185427 (32:2894)
  • [Fe] D. Feldman, Doubly stochastic measures: three vignettes, Distributions with Fixed Marginals and Related Topics (Seattle, WA, 1993), IMS Lecture Notes Monogr. Ser., vol. 28, Inst. Math. Statist., Hayward, CA, 1996, pp. 84-96. MR 1485525 (98k:28031)
  • [Gr] R. Grzaslewicz, On extreme infinite doubly stochastic matrices, Illinois J. Math. 31 (1987), 529-543. MR 0909782 (88i:15046)
  • [Ho] A. J. Hoffman, A special class of doubly stochastic matrices, Aequationes Math. 2 (1969), 319-326. MR 0263848 (41:8447)
  • [Is] J. R. Isbell, Birkhoff's problem $ 111$, Proc. Amer. Math. Soc. 6 (1955), 217-218. MR 0068507 (16:893f)
  • [K] G. Köthe, Topological vector spaces. I, Grundlehren Math. Wiss., vol. 159, Springer-Verlag New York, Inc., New York, 1969. MR 0248498 (40:1750)
  • [Ka] M. Katz, On the extreme points of a certain convex polytope, J. Combin. Theory 8 (1970), 417-423. MR 0255582 (41:243)
  • [Ke] D. G. Kendall, On infinite doubly-stochastic matrices and Birkhoff's problem, J. London Math. Soc. 35 (1960), 81-84. MR 0110947 (22:1815)
  • [KST] A. Kaminski, H. Sherwood, and M. D. Taylor, Doubly stochastic measures with mass on the graphs of two functions, Real Anal. Exchange 28 (1987/88), no 1, 253-257. MR 0923729 (89f:28005)
  • [Le] G. Letac, Représentation des mesures de probabilité sur le produit de deux espaces dénombrables, de marges données, Illinois J. Math. 10 (1966), 497-507. MR 0200957 (34:842)
  • [Li] J. Lindenstrauss, A remark on extreme doubly stochastic measures, Amer. Math. Monthly 72 (1965), 379-382. MR 0181728 (31:5955)
  • [LLL] J. L. Lewandowski, C. L. Liu, and J. W.-S. Liu, An algorithmic proof of a generalization of the Birkhoff-von Neumann theorem, J. Algorithms 7 (1986), no. 3, 323-330. MR 0855560 (87j:15042)
  • [LMST] X. Li, P. Mikusinski, H. Sherwood, and M. D. Taylor, In quest of Birkhoff's theorem in higher dimensions, Distributions with Fixed Marginals and Related Topics (Seattle, WA, 1993), IMS Lecture Notes Monogr. Ser., vol. 28, Inst. Math. Statist., Hayward, CA, 1996, pp. 187-197. MR 1485531 (99b:15027)
  • [Mu] H. G. Mukerjee, Supports of extremal measures with given marginals, Illinois J. Math. 29 (1985), 248-260. MR 0784522 (86j:28012)
  • [Ro] J. V. Romanovsky, A simple proof of the Birkhoff-von Neumann theorem on bistochastic matrices, A Tribute to Ilya Bakelman (College Station, TX, 1993), Discourses Math. Appl., vol. 3, Texas A and M Univ., College Station, TX, 1994, pp. 51-53. MR 1423368 (98c:15067)
  • [RP] B. A. Rattray and J. E. L. Peck, Infinite stochastic matrices, Trans. Roy. Soc. Canada Sect. III (3) 49 (1955), 55-57. MR 0075621 (17:778f)
  • [Ru] W. H. Ruckle, Sequence spaces, Res. Notes Math., vol. 49, Pitman (Advanced Publishing Program), Boston, MA-London, 1981. MR 0634231 (83g:46012)
  • [Sa] Yu. Safarov, Birkhoff's theorem and multidimensional spectra of self-adjoint operators, J. Funct. Anal. 222 (2005), 61-97. MR 2129765
  • [ST] H. Schreck and G. Tinhofer, A note on certain subpolytopes of the assignment polytope associated with circulant graphs, Linear Algebra Appl. 111 (1988), 125-134. MR 0974049 (90e:05031)
  • [Ti] G. Tinhofer, Strong tree-cographs are Birkhoff graphs, Discrete Appl. Math. 22 (1988/89), no. 3, 275-288. MR 0983251 (90a:05165)
  • [Vi] R. A. Vitale, Parametrizing doubly stochastic measures, Distributions with Fixed Marginals and Related Topics (Seattle, WA, 1993), IMS Lecture Notes Monogr. Ser., vol. 28, Inst. Math. Statist., Hayward, CA, 1996, pp. 358-364. MR 1485544 (98k:28014)

Similar Articles

Retrieve articles in St. Petersburg Mathematical Journal with MSC (2000): 05C50, 60C05

Retrieve articles in all journals with MSC (2000): 05C50, 60C05


Additional Information

Y. Safarov
Affiliation: Department of Mathematics, King’s College, Strand, London, United Kingdom
Email: yuri.safarov@kcl.ac.uk

DOI: https://doi.org/10.1090/S1061-0022-06-00930-7
Keywords: Stochastic matrices, weighted graphs, Birkhoff's theorem
Received by editor(s): March 10, 2005
Published electronically: July 20, 2006
Dedicated: To the memory of O. A. Ladyzhenskaya
Article copyright: © Copyright 2006 American Mathematical Society

American Mathematical Society