Remote Access St. Petersburg Mathematical Journal

St. Petersburg Mathematical Journal

ISSN 1547-7371(online) ISSN 1061-0022(print)



Homogenization of an elliptic system under condensing perforation of the domain

Authors: S. A. Nazarov and A. S. Slutskii
Translated by: A. Plotkin
Original publication: Algebra i Analiz, tom 17 (2005), nomer 6.
Journal: St. Petersburg Math. J. 17 (2006), 989-1014
MSC (2000): Primary 35J99
Published electronically: September 20, 2006
MathSciNet review: 2202047
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Homogenization of a system of second-order differential equations is performed in the case of a nonuniformly perforated rectangle where the sizes of the holes and the distances between pairs of them decrease as the distance from one of the bases of the rectangle increases. The Neumann conditions are assumed on the boundaries of the holes. The formal asymptotics of the solution is constructed, which involves the usual Ansatz of homogenization theory and also some Ansätze typical of solutions of boundary-value problems in thin domains, in particular, exponential boundary layers. Justification of the asymptotics is done with the help of the Korn inequality, which is proved for the perforated domain $ \Omega(h)$. Depending on the properties of the right-hand side, the norm of the difference between the true and the approximate solutions in the Sobolev space $ H^1(\Omega(h))$ is estimated by the quantity $ ch^\varkappa$ with $ \varkappa\in(0,1/2]$.

References [Enhancements On Off] (What's this?)

  • 1. O. A. Ladyzhenskaya, Boundary value problems of mathematical physics, ``Nauka'', Moscow, 1973; English transl., Appl. Math. Sci., vol. 49, Springer-Verlag, New York, 1985, 322 pp. MR 0599579 (58:29032); MR 0793735 (87f:35001)
  • 2. J. Necas, Les méthodes directes en théorie des équations elliptiques, Masson, Paris, 1967. MR 0227584 (37:3168)
  • 3. S. A. Nazarov, Polynomial property of selfadjoint elliptic boundary value problems, and the algebraic description of their attributes, Uspekhi Mat. Nauk 54 (1999), no. 5, 77-142; English transl., Russian Math. Surveys 54 (1999), no. 5, 947-1014. MR 1741662 (2001k:35073)
  • 4. -, Selfadjoint elliptic boundary-value problems. The polynomial property and formally positive operators, Some Questions of Mathematical Physics and Function Theory, Probl. Mat. Anal., vyp. 16, S.-Peterburg. Gos. Univ., St. Petersburg, 1997, pp. 167-192; English transl., J. Math. Sci. (N.Y.) 92 (1998), no. 6, 4338-4353. MR 1668418 (2000a:35042)
  • 5. V. A. Marchenko and E. Ya. Khruslov, Boundary value problems in domains with a fine-grained boundary, ``Naukova Dumka'', Kiev, 1974, 279 pp. (Russian) MR 0601059 (58:29143)
  • 6. N. S. Bakhvalov and G. A. Panasenko, Homogenization of processes in periodic media, ``Nauka'', Moscow, 1984, 352 pp; English transl., Math. Appl. (Soviet Ser.), vol. 36, Kluwer Acad. Publishers Group, Dordrecht, 1989. MR 0797571 (86m:73049); MR 1112788 (92d:73002)
  • 7. E. Sanchez-Palencia, Nonhomogeneous media and vibration theory, Lecture Notes in Phys., vol. 127, Springer-Verlag, Berlin-New York, 1980. MR 0578345 (82j:35010)
  • 8. O. A. Oleinik, G. A. Iosif'yan, and A. S. Shamaev, Mathematical problems in the theory of strongly inhomogeneous elastic media, Moskov. Gos. Univ., Moscow, 1990, 312 pp. (Russian) MR 1115306 (92i:73009)
  • 9. V. V. Zhikov, S. M. Kozlov, and O. A. Oleinik, Homogenization of differential operators, ``Nauka'', Moscow, 1993, 464 pp.; English transl., Springer-Verlag, Berlin, 1994, 570 pp. MR 1318242 (96h:35003a); MR 1329546 (96h:35003b)
  • 10. D. Cioranescu and J. Saint Jean Paulin, Homogenization of reticulated structures, Appl. Math. Sci., vol. 136, Springer-Verlag, New York, 1999. MR 1676922 (2000d:74064)
  • 11. S. M. Kozlov, Harmonization and homogenization on fractals, Comm. Math. Phys. 153 (1993), 339-357. MR 1218305 (94c:35026)
  • 12. V. V. Zhikov, Connectedness and averaging. Examples of fractal conductivity, Mat. Sb. 187 (1996), no. 8, 3-40; English transl., Sb. Math. 187 (1996), no. 8, 1109-1147. MR 1418340 (97h:35016)
  • 13. S. A. Nazarov, General averaging procedure for selfadjoint elliptic systems in many-dimensional domains, including thin ones, Algebra i Analiz 7 (1995), no. 5, 1-92; English transl., St.-Petersburg Math. J. 7 (1996), no. 5, 681-748. MR 1365812 (97c:35013)
  • 14. -, Asymptotic theory of thin plates and rods. Dimension reduction and integral estimates. Vol. 1, ``Nauchn. Kniga,'' Novosibirsk, 2002. (Russian)
  • 15. S. A. Nazarov and A. S. Slutskii, Branching periodicity homogenization of the Dirichlet problem for an elliptic system, Dokl. Akad. Nauk 397 (2004), no. 6, 743-747. (Russian) MR 2120175
  • 16. S. A. Nazarov, Elliptic boundary value problems with periodic coefficients in a cylinder, Izv. Akad. Nauk SSSR Ser. Mat. 45 (1981), no. 1, 101-112; English transl. in Math. USSR-Izv. 18 (1982), no. 1. MR 0607578 (82e:35035)
  • 17. P. A. Kuchment, Floquet theory for partial differential equations, Uspekhi Mat. Nauk 37 (1982), no. 4, 3-52; English transl., Russian Math. Surveys 37 (1982), no. 4, 60-94. MR 0667973 (84b:35018)
  • 18. S. A. Nazarov, Nonselfadjoint elliptic problems with the polynomial property in domains possessing cylindrical outlets to infinity, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 249 (1997), 212-230; English transl., J. Math. Sci. (New York) 101 (2000), no. 5, 3512-3522. MR 1698519 (2001b:35087)
  • 19. S. A. Nazarov and B. A. Plamenevskii, Elliptic problems in domains with piecewise smooth boundaries, ``Nauka'', Moscow, 1991; English transl., de Gruyter Exp. in Math., vol. 13, Walter de Gruyter, Berlin, 1994, 525 pp. MR 1283387 (95h:35001)

Similar Articles

Retrieve articles in St. Petersburg Mathematical Journal with MSC (2000): 35J99

Retrieve articles in all journals with MSC (2000): 35J99

Additional Information

S. A. Nazarov
Affiliation: Institute of Mechanical Engineering Problems, Bol′shoĭ pr. V. O. 61, 199178 St. Petersburg, Russia

A. S. Slutskii
Affiliation: Institute of Mechanical Engineering Problems, Bol′shoĭ pr. V. O. 61, 199178 St. Petersburg, Russia

Keywords: Fractal type perforated domain, homogenization, Korn's inequality, corrector
Received by editor(s): September 13, 2004
Published electronically: September 20, 2006
Additional Notes: Supported by RFBR (project no. 03-01-00838)
Article copyright: © Copyright 2006 American Mathematical Society

American Mathematical Society