Remote Access St. Petersburg Mathematical Journal

St. Petersburg Mathematical Journal

ISSN 1547-7371(online) ISSN 1061-0022(print)



Weighted Sobolev-type embedding theorems for functions with symmetries

Authors: S. V. Ivanov and A. I. Nazarov
Translated by: A. I. Nazarov
Original publication: Algebra i Analiz, tom 18 (2006), nomer 1.
Journal: St. Petersburg Math. J. 18 (2007), 77-88
MSC (2000): Primary 46E35; Secondary 58D99
Published electronically: November 27, 2006
MathSciNet review: 2225214
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: It is well known that Sobolev embeddings can be refined in the presence of symmetries. Hebey and Vaugon (1997) studied this phenomena in the context of an arbitrary Riemannian manifold $ \mathcal{M}$ and a compact group of isometries $ G$. They showed that the limit Sobolev exponent increases if there are no points in $ \mathcal{M}$ with discrete orbits under the action of $ G$.

In the paper, the situation where $ \mathcal{M}$ contains points with discrete orbits is considered. It is shown that the limit Sobolev exponent for $ W^1_p({\mathcal{M}})$ increases in the case of embeddings into weighted spaces $ L_q({\mathcal{M}},w)$ instead of the usual $ L_q$ spaces, where the weight function $ w(x)$ is a positive power of the distance from $ x$ to the set of points with discrete orbits. Also, embeddings of $ W^1_p({\mathcal{M}})$ into weighted Hölder and Orlicz spaces are treated.

References [Enhancements On Off] (What's this?)

  • 1. W. A. Strauss, Existence of solitary waves in higher dimensions, Comm. Math. Phys. 55 (1977), 149-162. MR 0454365 (56:12616)
  • 2. P.-L. Lions, The concentration-compactness principle in the calculus of variations. The limit case. II, I, Rev. Mat. Iberoamericana 1 (1985), 45-121 (II), 145-201 (I). MR 0850686 (87j:49012); MR 0834360 (87c:49007)
  • 3. W. Ding, On a conformally invariant elliptic equation on $ {\mathbb{R}}^n$, Comm. Math. Phys. 107 (1986), 331-335. MR 0863646 (87m:35066)
  • 4. A. I. Nazarov, On solutions of the Dirichlet problem for an equation involving the $ p$-Laplacian in a spherical layer, Trudy S.-Peterburg. Mat. Obshch. 10 (2004), 33-62. (Russian)
  • 5. T. Bartsch, M. Schneider, and T. Weth, Multiple solutions of a critical polyharmonic equation, J. Reine Angew. Math. 571 (2004), 131-143. MR 2070146 (2005g:35059)
  • 6. A. P. Scheglova, The nonuniqueness of solutions of a boundary value problem with nonlinear Neumann condition, Probl. Mat. Anal., vyp. 30, S.-Peterburg. Univ., St. Petersburg, 2005, pp. 121-144; English. transl., J. Math. Sci. (N. Y.) 128 (2005), no. 5, 3306-3333. MR 2171603 (2006h:35100)
  • 7. E. Hebey and M. Vaugon, Sobolev spaces in the presence of symmetries, J. Math. Pures Appl. (9) 76 (1997), 859-881. MR 1489942 (98m:46047)
  • 8. A. I. Nazarov, On the symmetry of extremals in the weight embedding theorem, Probl. Mat. Anal., vyp. 23, S.-Peterburg. Univ., St. Petersburg, 2001, pp. 50-75; English transl., J. Math. Sci. 107 (2001), no. 3, 3841-3869. MR 1887840 (2003f:49078)
  • 9. D. Gilbarg and N. Trudinger, Elliptic partial differential equations of the second order, 2nd ed., Grundlehren Math. Wiss., vol. 224, Springer-Verlag, Berlin, 1983. MR 0737190 (86c:35035)
  • 10. L. V. Kantorovich and G. P. Akilov, Functional analysis, 3rd. ed., ``Nauka'', Moscow, 1984; English transl. of 2nd ed., Pergamon Press, Oxford-Elmsford, NY, 1982. MR 0788496 (86m:46001); MR 0664597 (83h:46002)
  • 11. H. Triebel, Approximation numbers and entropy numbers of embeddings of fractional Besov-Sobolev spaces in Orlicz spaces, Proc. London Math. Soc. (3) 66 (1993), no. 3, 589-618. MR 1207550 (94g:46042)
  • 12. Sh. Kobayashi and K. Nomizu, Foundations of differential geometry. Vol. 1, Intersci. Tracts in Pure Appl. Math., No. 15, Intersci. Publ., New York-London, 1963. MR 0152974 (27:2945)

Similar Articles

Retrieve articles in St. Petersburg Mathematical Journal with MSC (2000): 46E35, 58D99

Retrieve articles in all journals with MSC (2000): 46E35, 58D99

Additional Information

S. V. Ivanov
Affiliation: St. Petersburg Branch, Steklov Mathematical Institute, Russian Academy of Sciences, Fontanka 27, St. Petersburg 191023, Russia

A. I. Nazarov
Affiliation: Department of Mathematics and Mechanics, St. Petersburg State University, Universitetskiĭ Pr. 28, St. Petersburg 198904, Russia

Keywords: Embedding theorems, Sobolev spaces, symmetries
Received by editor(s): June 28, 2005
Published electronically: November 27, 2006
Additional Notes: The first author was partially supported by RFBR (grant no. 05-01-00939) and by the Russian Science Support Foundation. The second author was partially supported by RFBR (grant no. 05-01-01063).
Article copyright: © Copyright 2006 American Mathematical Society

American Mathematical Society