Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
Mobile Device Pairing
St. Petersburg Mathematical Journal
St. Petersburg Mathematical Journal
ISSN 1547-7371(online) ISSN 1061-0022(print)

Construction of spherical cubature formulas using lattices


Authors: P. de la Harpe, C. Pache and B. Venkov
Original publication: Algebra i Analiz, tom 18 (2006), nomer 1.
Journal: St. Petersburg Math. J. 18 (2007), 119-139
MSC (2000): Primary 65D32, 05B30; Secondary 11F11, 11H06
Published electronically: January 19, 2007
MathSciNet review: 2225217
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We construct cubature formulas on spheres supported by homothetic images of shells in some Euclidean lattices. Our analysis of these cubature formulas uses results from the theory of modular forms. Examples are worked out on $ \mathbb{S}^{n-1}$ for $ n=4$, $ 8$, $ 12$, $ 14$, $ 16$, $ 20$, $ 23$, and $ 24$, and the sizes of the cubature formulas we obtain are compared with the lower bounds given by Linear Programming.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in St. Petersburg Mathematical Journal with MSC (2000): 65D32, 05B30, 11F11, 11H06

Retrieve articles in all journals with MSC (2000): 65D32, 05B30, 11F11, 11H06


Additional Information

P. de la Harpe
Affiliation: Section de Mathématiques, Université de Genève, C.P. 64, 1211 Genève 4, Switzerland
Email: Pierre.delaHarpe@math.unige.ch

C. Pache
Affiliation: Section de Mathématiques, Université de Genève, C.P. 64, 1211 Genève 4, Switzerland
Email: Claude.Pache@math.unige.ch

B. Venkov
Affiliation: St. Petersburg Branch, Steklov Mathematical Institute, Russian Academy of Sciences, Fontanka 27, St. Petersburg 191023, Russia
Email: bbvenkov@yahoo.com

DOI: http://dx.doi.org/10.1090/S1061-0022-07-00946-6
PII: S 1061-0022(07)00946-6
Keywords: Cubature formula, modular lattice, modular form, spherical $t$-design
Received by editor(s): June 3, 2005
Published electronically: January 19, 2007
Additional Notes: The authors acknowledge support from the Swiss National Science Foundation
Article copyright: © Copyright 2007 American Mathematical Society