Remote Access St. Petersburg Mathematical Journal

St. Petersburg Mathematical Journal

ISSN 1547-7371(online) ISSN 1061-0022(print)

 
 

 

Tame representations of the group $ \operatorname{GL}(\infty,\mathbb{F}_q)$


Author: A. V. Dudko
Translated by: B. M. Bekker
Original publication: Algebra i Analiz, tom 18 (2006), nomer 2.
Journal: St. Petersburg Math. J. 18 (2007), 223-239
MSC (2000): Primary 43A65
DOI: https://doi.org/10.1090/S1061-0022-07-00949-1
Published electronically: March 16, 2007
MathSciNet review: 2244936
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A complete classification of irreducible tame representations of the group $ G(\infty)=\varinjlim G(n)$ is presented. Here $ G(n)=\operatorname{GL}(n, \mathbb{F}_q)$ is the group of nonsingular matrices of order $ n$ over the finite field $ \mathbb{F}_q$.


References [Enhancements On Off] (What's this?)

  • 1. A. A. Kirillov, Elements of the theory of representations, 2nd ed., ``Nauka'', Moscow, 1978; English transl. of 1st ed., Grundlehren Math. Wiss., vol. 220, Springer-Verlag, Berlin-New York, 1976. MR 0412321 (54:447)
  • 2. A. Yu. Okun'kov, Thoma's theorem and representations of an infinite bisymmetric group, Funktsional. Anal. i Prilozhen. 28 (1994), no. 2, 31-40; English transl., Funct. Anal. Appl. 28 (1994), no. 2, 100-107. MR 1283250 (95d:20022)
  • 3. -, On representations of the infinite symmetric group, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 240 (1997), 166-228; English transl., J. Math. Sci. (New York) 96 (1999), no. 5, 3550-3589; arXiv: math. RT/9803037. MR 1691646 (2000c:20027)
  • 4. G. I. Ol'shanskii, Unitary representations of the infinite symmetric group: A semigroup approach, Representations of Lie Groups and Lie Algebras (Budapest, 1971), Acad. Kiado, Budapest, 1985, pp. 181-197. MR 829049 (87i:22013)
  • 5. -, Unitary representations of $ (G,K)$-pairs connected with the infinite symmetric group $ S(\infty)$, Algebra i Analiz 1 (1989), no. 4, 178-209; English transl., St. Petersburg Math. J. 1 (1990), no. 4, 983-1014. MR 1027466 (91k:22011)
  • 6. -, On semigroups related to infinite-dimensional groups, Topics in Representation Theory, Adv. Soviet Math., vol. 2, Amer. Math. Soc., Providence, RI, 1991, pp. 67-101. MR 1104938 (92g:22040)
  • 7. -, New ``large'' groups of type I, Itogi Nauki i Tekhniki Sovrem. Probl. Mat., vol. 16, VINITI, Moscow, 1980, pp. 31-52; English transl. in J. Soviet Math. 18 (1982), no. 1. MR 611159 (82k:22014)
  • 8. W. Rudin, Functional analysis, 2nd ed., McGraw-Hill, Inc., New York, 1991. MR 1157815 (92k:46001)
  • 9. Yu. A. Neretin, Categories of symmetries and infinite-dimensional groups, ``Èditorial URSS'', 1998; English transl., London Math. Soc. Monogr. New Ser., vol. 16, Clarendon Press, Oxford Univ. Press, New York, 1996. MR 1418863 (98b:22003)
  • 10. M. Saito, Représentations unitaires monomiales d'un groupe discret, en particulier du groupe modulaire, J. Math. Soc. Japan 26 (1974), no. 3, 464-482. MR 0376966 (51:13141)
  • 11. R. S. Ismagilov, Linear representations of groups of matrices with elements from a normed field, Izv. Akad. Nauk SSSR Ser. Mat. 33 (1969), no. 6, 1296-1323; English transl. in Math. USSR-Izv. 3 (1969). MR 0262417 (41:7025)

Similar Articles

Retrieve articles in St. Petersburg Mathematical Journal with MSC (2000): 43A65

Retrieve articles in all journals with MSC (2000): 43A65


Additional Information

A. V. Dudko
Affiliation: Kharkiv National University, 4 Svobody sq., 61077 Kharkiv, Ukraine
Email: artemdudko@rambler.ru

DOI: https://doi.org/10.1090/S1061-0022-07-00949-1
Keywords: Irreducible tame representation, semigroup
Received by editor(s): May 11, 2005
Published electronically: March 16, 2007
Article copyright: © Copyright 2007 American Mathematical Society

American Mathematical Society