Remote Access St. Petersburg Mathematical Journal

St. Petersburg Mathematical Journal

ISSN 1547-7371(online) ISSN 1061-0022(print)

 
 

 

Homogenization of elliptic systems with periodic coefficients: Weighted $ L^p$ and $ L^{\infty}$ estimates for asymptotic remainders


Author: S. A. Nazarov
Translated by: A. Plotkin
Original publication: Algebra i Analiz, tom 18 (2006), nomer 2.
Journal: St. Petersburg Math. J. 18 (2007), 269-304
MSC (2000): Primary 35J45
DOI: https://doi.org/10.1090/S1061-0022-07-00951-X
Published electronically: March 19, 2007
MathSciNet review: 2244938
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The difference between the fundamental matrix for a second order selfadjoint elliptic system with sufficiently smooth periodic coefficients and the fundamental matrix for the corresponding homogenized system in $ \mathbb{R}^n$ is shown to decay as $ O(1+\vert x\vert^{1-n}$) at infinity, $ n\ge 2$. As a consequence, weighted $ L^p$ and $ L^{\infty}$ estimates are obtained for the difference $ u^{\varepsilon}-u^0$ of the solutions of a system with rapidly oscillating periodic coefficients and the homogenized system in $ \mathbb{R}^n$ with right-hand side belonging to an appropriate weighted $ L^p$-class in $ \mathbb{R}^n$.


References [Enhancements On Off] (What's this?)

  • 1. J. Necas, Les méthodes directes en théorie des équations elliptiques, Masson, Paris, 1967. MR 0227584 (37:3168)
  • 2. S. A. Nazarov, Polynomial property of selfadjoint elliptic boundary value problems, and the algebraic description of their attributes, Uspekhi Mat. Nauk 54 (1999), no. 5, 77-142; English transl., Russian Math. Surveys 54 (1999), no. 5, 947-1014. MR 1741662 (2001k:35073)
  • 3. -, Asymptotic theory of thin plates and rods. Dimension reduction and integral estimates. Vol. 1, ``Nauchn. Kniga'', Novosibirsk, 2002. (Russian).
  • 4. A. Bensoussan, J. L. Lions, and G. Papanicolaou, Asymptotic analysis for periodic structures, Stud. in Math. Appl., vol. 5, North-Holland Publishing Co., Amsterdam-New York, 1978. MR 503330 (82h:35001)
  • 5. N. S. Bakhvalov and G. P. Panasenko, Homogenization: Averaging processes in periodic media. Mathematical problems in the mechanics of composite materials, ``Nauka'', Moscow, 1984; English transl., Math. Appl. (Soviet Ser.), vol. 36, Kluwer Acad. Publ. Group, Dordrecht, 1989. MR 1112788 (92d:73002)
  • 6. E. Sanchez-Palencia, Nonhomogeneous media and vibration theory, Lecture Notes in Phys., vol.  127, Springer-Verlag, Berlin-New York, 1980. MR 578345 (82j:35010)
  • 7. V. V. Zhikov, S. M. Kozlov, and O. A. Oleinik, Homogenization of differential operators, ``Nauka'', Moscow, 1993; English transl., Springer-Verlag, Berlin, 1994. MR 1318242 (96h:35003a); MR 1329546 (96h:35003b)
  • 8. O. A. Oleinik, G. A. Iosif'yan, and A. S. Shamaev, Mathematical problems in the theory of strongly inhomogeneous elastic media, Moskov. Gos. Univ., Moscow, 1990. (Russian) MR 1115306 (92i:73009)
  • 9. O. A. Ladyzhenskaya, Boundary value problems of mathematical physics, ``Nauka'', Moscow, 1973; English transl., Appl. Math. Sci., vol. 49, Springer-Verlag, New York, 1985. MR 0599579 (58:29032); MR 0793735 (87f:35001)
  • 10. S. A. Nazarov, Asymptotic expansion of the solution of the Dirichlet problem for an equation with rapidly oscillating coefficients in a rectangle, Mat. Sb. 182 (1991), no. 5, 692-722; English transl., Math. USSR-Sb. 73 (1992), no. 1, 79-110. MR 1124104 (92h:35038)
  • 11. M. Sh. Birman and T. A. Suslina, Threshold effects near the lower edge of the spectrum for periodic differential operators of mathematical physics, Systems, Approximation, Singular Integral Operators and Related Topics (Bordeaux, 2000), Oper. Theory Adv. Appl., vol. 129, Birkhäuser, Basel, 2001, pp. 71-107. MR 1882692 (2003f:35220)
  • 12. -, Second order periodic differential operators. Threshold properties and homogenization, Algebra i Analiz 15 (2003), no. 5, 1-108; English transl., St. Petersburg Math. J. 15 (2004), no. 5, 639-714. MR 2068790 (2005k:47097)
  • 13. V. V. Zhikov, On the operator estimates in the homogenization theory, Dokl. Akad. Nauk 403 (2005), no. 3, 305-308. (Russian) MR 2164541
  • 14. -, On the spectral method in the homogenization theory, Trudy Mat. Inst. Steklova 250 (2005), 95-104; English transl., Proc. Steklov Inst. Math. 2005, no. 3 (250), 85-94. MR 2200910 (2006i:35016)
  • 15. R. A. Adams and J. J. F. Fournier, Sobolev spaces, Elsevier Science, Ltd., Amsterdam, 2003.
  • 16. E. V. Sevost'yanova, Asymptotic expansion of the solution of a second-order elliptic equation with periodic rapidly oscillating coefficients, Mat. Sb. 115 (1981), no. 2, 204-222; English transl., Math. USSR-Sb. 43 (1982), no. 2, 181-198. MR 622145 (83d:35038)
  • 17. S. A. Nazarov, Asymptotics at infinity of the solution to the Dirichlet problem for a system of equations with periodic coefficients in an angular domain, Russian J. Math. Phys. 3 (1995), no. 3, 297-326. (English) MR 1370627 (97g:35034)
  • 18. S. A. Nazarov and G. Thäter, Asymptotics at infinity of solutions to the Neumann problem in a sieve-type layer, C.R. Mecanique 331 (2003), 85-90.
  • 19. -, Neumann problem in a perforated layer (sieve), Asymptot. Anal. 44 (2005), no. 3/4, 259-298. MR 2176275 (2006g:35036)
  • 20. S. A. Nazarov and A. S. Slutskii, Asymptotic behavior of solutions of boundary value problems for an equation with rapidly oscillating coefficients in a domain with a small cavity, Mat. Sb. 189 (1998), no. 9, 107-142; English transl., Sb. Math. 189 (1998), no. 9-10, 1385-1422. MR 1680848 (2000a:35014)
  • 21. I. M. Gel'fand and G. E. Shilov, Generalized functions and operations on them, Fizmatlit., Moscow, 1958; English transl., Generalized functions. Vol. 1. Properties and operations, Acad. Press, New York-London, 1964 [1977]. MR 0097715 (20:4182); MR 0435831 (55:8786a)
  • 22. E. M. Stein and G. Weiss, Fractional integrals on $ n$-dimensional Euclidean space, J. Math. Mech. 7 (1958), 503-514. MR 0098285 (20:4746)
  • 23. R. McOwen, The behavior of the Laplacian on weighted Sobolev spaces, Comm. Pure Appl. Math. 32 (1979), 783-795. MR 539158 (81m:47069)
  • 24. S. Agmon, A. Douglis, and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. II, Comm. Pure Appl. Math. 17 (1964), 35-92. MR 0162050 (28:5252)
  • 25. V. A. Solonnikov, General boundary value problems for systems elliptic in the sense of A. Douglis and L. Nirenberg. I, Izv. Akad. Nauk SSSR Ser. Mat. 28 (1964), no. 3, 665-706; II, Trudy Mat. Inst. Steklov. 92 (1966), 233-297. (Russian) MR 0211070 (35:1952); MR 0211071 (35:1953)
  • 26. V. A. Kondrat'ev, Boundary value problems for elliptic equations in domains with conical or angular points, Trudy Moskov. Mat. Obshch. 16 (1967), 209-292. (Russian) MR 0226187 (37:1777)
  • 27. V. G. Maz'ya and B. A. Plamenevskii, Weighted spaces with inhomogeneous norms, and boundary value problems in domains with conical points, Elliptische Differentialgleichungen (Meeting, Rostock, 1977), Wilhelm-Pieck-Univ., Rostock, 1978, pp. 161-190. (Russian) MR 540196 (81e:35045)
  • 28. S. A. Nazarov, The Vishik-Lyusternik method for elliptic boundary value problems in regions with conic points. I. Problem in a cone, Sibirsk. Mat. Zh. 22 (1981), no. 4, 142-163; English transl., Siberian Math. J. 22 (1981), no. 4, 594-611 (1982). MR 624412 (83m:35046a)
  • 29. -, On the water flow under a lying stone, Mat. Sb. 186 (1995), no. 11, 75-110; English transl., Sb. Math. 186 (1995), no. 11, 1621-1658. MR 1368787 (96m:76011)
  • 30. -, Asymptotics of the solution to the Neumann problem in a domain with singular point of peak exterior type, Russian J. Math. Phys. 4 (1996), no. 2, 217-250. (English) MR 1414884 (2000d:35044)
  • 31. -, Asymptotic expansions at infinity of solutions of a problem in the theory of elasticity in a layer, Trudy Moskov. Mat. Obshch. 60 (1999), 3-97; English transl., Trans. Moscow Math. Soc. 1999, 1-85. MR 1702684 (2000h:35021)
  • 32. A. Pazy, Asymptotic expansions of solutions of ordinary differential equations in Hilbert space, Arch. Rational Mech. Anal. 24 (1967), 193-218. MR 0209618 (35:515)
  • 33. S. A. Nazarov and B. A. Plamenevskii, Elliptic problems in domains with piecewise smooth boundaries, ``Nauka'', Moscow, 1991; English transl., de Gruyter Exp. Math., vol. 13, Walter de Gruyter, Berlin, 1994. MR 1283387 (95h:35001)
  • 34. V. G. Maz'ya and B. A. Plamenevskii, The coefficients in the asymptotics of solutions of elliptic boundary value problems with conical points, Math. Nachr. 76 (1977), 29-60. (Russian) MR 0601608 (58:29176)
  • 35. V. A. Kozlov, V. G. Maz'ya, and J. Rossmann, Elliptic boundary value problems in domains with point singularities, Math. Surveys Monogr., vol. 52, Amer. Math. Soc., Providence, RI, 1997. MR 1469972 (98f:35038)
  • 36. V. G. Maz'ya and B. A. Plamenevskii, Estimates in $ L_p$ and in Hölder classes, and the Miranda-Agmon maximum principle for the solutions of elliptic boundary value problems in domains with singular points on the boundary, Math. Nachr. 81 (1978), 25-82. (Russian) MR 0492821 (58:11886)

Similar Articles

Retrieve articles in St. Petersburg Mathematical Journal with MSC (2000): 35J45

Retrieve articles in all journals with MSC (2000): 35J45


Additional Information

S. A. Nazarov
Affiliation: Institute of Mechanical Engineering Problems, Bol′shoĭ pr. V.O. 61, 199178 St. Petersburg, Russia
Email: serna@snark.ipme.ru, srgnazarov@yahoo.co.uk

DOI: https://doi.org/10.1090/S1061-0022-07-00951-X
Keywords: Homogenization, periodic differential operators, weighted estimates
Received by editor(s): October 1, 2005
Published electronically: March 19, 2007
Additional Notes: Supported by RFBR (grant no. 04-01-00567)
Article copyright: © Copyright 2007 American Mathematical Society

American Mathematical Society