Remote Access St. Petersburg Mathematical Journal

St. Petersburg Mathematical Journal

ISSN 1547-7371(online) ISSN 1061-0022(print)

 
 

 

Some functional-difference equations solvable in finitary functions


Author: E. A. Gorin
Translated by: S. V. Kislyakov
Original publication: Algebra i Analiz, tom 18 (2006), nomer 5.
Journal: St. Petersburg Math. J. 18 (2007), 779-796
MSC (2000): Primary 34K99, 32A15
DOI: https://doi.org/10.1090/S1061-0022-07-00973-9
Published electronically: August 9, 2007
MathSciNet review: 2301043
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The following equation is considered: $ q(-i\partial/\partial x)u(x)=(f*u)(Ax)$, where $ q$ is a polynomial with complex coefficients, $ f$ is a compactly supported distribution, and $ A:\mathbb{R}^n\to\mathbb{R}^n$ is a linear operator whose complexification has no spectrum in the closed unit disk. It turns out that this equation has a (smooth) solution $ u(x)$ with compact support. In the one-dimensional case, this problem was treated earlier in detail by V. A. Rvachev and V. L. Rvachev and their numerous students.


References [Enhancements On Off] (What's this?)

  • 1. I. M. Vinogradov, V. I. Bitjuckov, and Ju. V. Prohorov (eds.), Mathematical encyclopedia. Vol. 1: A-G, ``Sovet. Èntsiklopediya'', Moscow, 1977; English transl., Encyclopaedia of mathematics. MR 0470361 (81c:00008a)
  • 2. V. L. Rvachev and V. A. Rvachev, Nonclassical methods of approximation theory in boundary value problems, ``Naukova Dumka'', Kiev, 1979. (Russian)
  • 3. Yu. G. Stoyan, V. S. Protsenko, G. P. Man'ko et al., The theory of $ \mathcal{R}$-functions and current problems of applied mathematics, ``Naukova Dumka'', Kiev, 1986. (Russian) MR 0896485 (88h:65008)
  • 4. V. A. Rvachev, Compactly-supported solutions of functional-differential equations and their applications, Uspekhi Mat. Nauk 45 (1990), no. 1, 77-103; English transl., Russian Math. Surveys 45 (1990), no. 1, 87-120. MR 1050928 (91j:34104)
  • 5. V. M. Kolodyazhnii and V. O. Rvachov, Some properties of atomic functions of several variables, Dopov. Nats. Akad. Nauk Ukr. Mat. Prirodozn. Tekh. Nauki 2005, no. 1, 12-20. (Ukrainian) MR 2150996 (2006a:35299)
  • 6. E. A. Gorin, On finite solutions for some functional-differential equations, Uspekhi Mat. Nauk 36 (1981), no. 4, 211-212. (Russian)
  • 7. M. Hervé, Several complex variables. Local theory, Oxford Univ. Press, London, 1963. MR 0151632 (27:1616)
  • 8. R. C. Gunning and H. Rossi, Analytic functions of several complex variables, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1965. MR 0180696 (31:4927)
  • 9. B. V. Shabat, Introduction to complex analysis. Part 2. Functions of several variables, 3rd ed., ``Nauka'', Moscow, 1985; English transl., Transl. Math. Monogr., vol. 110, Amer. Math. Soc., Providence, RI, 1992. MR 0831938 (88b:32001); MR 1192135 (93g:32001)
  • 10. E. M. Chirka, Complex analytic sets, ``Nauka'', Moscow, 1985; English transl., Math. Appl. (Soviet Ser.), vol. 46, Kluwer Acad. Publishers Group, Dordrecht, 1989. MR 0784797 (86i:32002); MR 1111477 (92b:32016)
  • 11. G. R. Belitskii and Yu. I. Lyubich, Norms of matrices and their applications, ``Naukova Dumka'', Kiev, 1984. (Russian) MR 0799924 (87e:15002)
  • 12. B. Ya. Levin, Distribution of zeros of entire functions, ``Gostekhizdat'', Moscow, 1956; English transl., Transl. Math. Monogr., vol. 5, Amer. Math. Soc., Providence, RI, 1980. MR 0087740 (19:402c); MR 0589888 (81k:30011)
  • 13. E. A. Gorin, Estimates for the involution of decomposable elements of a complex Banach algebra, Funktsional. Anal. i Prilozhen. 39 (2005), no. 4, 14-31; English transl., Funct. Anal. Appl. 39 (2005), no. 4, 256-270. MR 2197511 (2006i:46068)
  • 14. -, Bernstein inequalities from the perspective of operator theory, Vestnik Khar'kov. Gos. Univ. No. 205 (1980), 77-105. (Russian) MR 0643356 (83d:41017)
  • 15. G. E. Shilov, Mathematical analysis: Second special course, ``Nauka'', Moscow, 1965. (Russian) MR 0219869 (36:2943)
  • 16. L. Hörmander, The analysis of linear partial differential operators. II. Differential operators with constant coefficients, Grundlehren Math. Wiss., Bd. 257, Springer-Verlag, Berlin, 1983. MR 0705278 (85g:35002b)
  • 17. Z. I. Borevich and I. R. Shafarevich, The theory of numbers, 2nd ed., ``Nauka'', Moscow, 1972; Reprint of the 1967 French transl., Éditions J. Gabay, Sceaux, 1993. MR 0352038 (50:4526); MR 1355542 (96e:11001)
  • 18. L. I. Ronkin, Entire functions, Itogi Nauki i Tekhniki Sovrem. Probl. Mat. Fundam. Napravleniya, vol. 9, VINITI, Moscow, 1986, pp. 5-36. (Russian) MR 0860608
  • 19. J. Milnor, Singular points of complex hypersurfaces, Ann. of Math. Stud., No. 61, Princeton Univ. Press, Princeton, NJ; Univ. Tokyo Press, Tokyo, 1968. MR 0239612 (39:969)
  • 20. N. Ya. Vilenkin, Special functions and theory of group representations, ``Nauka'', Moscow, 1965; English transl., Transl. Math. Monogr., vol. 22, Amer. Math. Soc., Providence, RI, 1968. MR 0209523 (35:420); MR 0229863 (37:5429)
  • 21. I. Daubechies and J. Lagarias, Two-scale difference equations. II. Local regularity, infinite products of matrices and fractals, SIAM J. Math. Anal. 23 (1992), 1031-1079. MR 1166574 (93g:39001)
  • 22. A. S. Cavaretta, W. Dahmen, and C. A. Micchelli, Stationary subdivision, Mem. Amer. Math. Soc. 93 (1991), no. 453. MR 1079033 (92h:65017)
  • 23. G. A. Derfel', A probabilistic method for studying a class of functional-differential equations, Ukrain. Mat. Zh. 41 (1989), no. 10, 1322-1327; English transl., Ukrainian Math. J. 41 (1989), no. 10, 1137-1141 (1990). MR 1034672 (90j:34095)
  • 24. Y. Peres and B. Solomyak, Absolute continuity of Bernoulli convolutions, a simple proof, Math. Res. Lett. 3 (1996), no. 2, 231-239. MR 1386842 (97f:28006)
  • 25. V. Yu. Protasov, On the problem of the asymptotics of the partition function, Mat. Zametki 76 (2004), no. 1, 151-156; English transl., Math. Notes 76 (2004), no. 1-2, 144-149. MR 2099853 (2006a:11132)

Similar Articles

Retrieve articles in St. Petersburg Mathematical Journal with MSC (2000): 34K99, 32A15

Retrieve articles in all journals with MSC (2000): 34K99, 32A15


Additional Information

E. A. Gorin
Affiliation: Department of Mathematics, Moscow State Pedagogical University, Ulitsa Malaya Pirogovskaya 1, Moscow 119882, Russia
Email: evgeny.gorin@mtu-net.ru

DOI: https://doi.org/10.1090/S1061-0022-07-00973-9
Keywords: Finitary solution, entire function of exponential type, refinement equation
Received by editor(s): April 22, 2006
Published electronically: August 9, 2007
Dedicated: Dedicated to the 100th anniversary of B. Ya. Levin’s birth
Article copyright: © Copyright 2007 American Mathematical Society

American Mathematical Society